【題目】一個社會調(diào)查機構(gòu)就某地居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖).為了分析居民的收入與年齡、學歷、職業(yè)等方面的關(guān)系,要從這10 000人中再用分層抽樣方法抽出80人作進一步調(diào)查,則在[1 500,2 000)(元)月收入段應抽出( )人.

A.15
B.16
C.17
D.18

【答案】B
【解析】解:由頻率分布直方圖,得[1 500,2 000)(元)月收入段的頻率為0.0004×500=0.2,
∴[1 500,2 000)(元)月收入段有0.2×10000=2000人,
∴用分層抽樣方法抽出80人作進一步調(diào)查,
則在[1 500,2 000)(元)月收入段應抽出2000× =16(人).
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)2ax,x(0,1].若f(x)(0,1]上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半徑為4m的水輪繞著圓心O逆時針做勻速圓周運動,每分鐘轉(zhuǎn)動4圈,水輪圓心O距離水面2m,如果當水輪上點P從離開水面的時刻(P0)開始計算時間.

(1)將點P距離水面的高度y(m)與時間t(s)滿足的函數(shù)關(guān)系;
(2)求點P第一次到達最高點需要的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從“充分不必要條件”“必要不充分條件”“充要條件”“既不充分也不必要條件”中,選出適當?shù)囊环N填空:

(1)記集合A{1p,2},B{2,3},則“p3”是“ABB”的__________________;

(2)a1”是“函數(shù)f(x)|2xa|在區(qū)間上為增函數(shù)”的________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖所示.

(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點的縱坐標不變,橫坐標縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;
(3)當x∈[﹣ , ]時,求函數(shù)y=f(x+ )﹣ f(x+ )的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明計劃在8月11日至8月20日期間游覽某主題公園.根據(jù)旅游局統(tǒng)計數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比,40%以下為舒適,40%—60%為一般,60%以上為擁擠)情況如圖所示.小明隨機選擇8月11日至8月19日中的某一天到達該主題公園,并游覽2天.

(Ⅰ)求小明連續(xù)兩天都遇上擁擠的概率;

(Ⅱ)設是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學期望;

(Ⅲ)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點M(xy)到直線lx=4的距離是它到點N(1,0)的距離的2倍.

(1)求動點M的軌跡C的方程;

(2)過點P(0,3)的直線m與軌跡C交于A,B兩點,若APB的中點,求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)證明數(shù)列{an﹣n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)證明不等式Sn+1≤4Sn , 對任意n∈N*皆成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.
)若函數(shù)處有極小值,求,的值;
)若,設,求證:當時,;
)若,,對于給定,,,,其中,,,若.求的取值范圍.

查看答案和解析>>

同步練習冊答案