已知函數(shù),
(1)
(2)是否存在實數(shù),使上的最小值為,若存在,求出的值;若不存在,說明理由。

(1)-1
(2) 存在,使上的最小值為

解析試題分析:解:(1).    1分

(2)假設存在實數(shù),使上的最小值為,
………6分
=0,得………7分
下面就與區(qū)間的相對位置討論,
① 若,則
上恒成立,此時上為增函數(shù), 8分
(舍去).   9分
② 若,則,即上恒成立,
此時上為減函數(shù), 10分
(舍去).………11分
③ 若, (方法1):列表如下


    1





     

    0

     




    練習冊系列答案
    相關(guān)習題

    科目:高中數(shù)學 來源: 題型:解答題

    題文已知函數(shù).
    (1)求函數(shù)的單調(diào)遞減區(qū)間;
    (2)若不等式對一切恒成立,求的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    文科設函數(shù)。(Ⅰ)若函數(shù)處與直線相切,①求實數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當時,若不等式對所有的都成立,求實數(shù)m的取值范圍。

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    設函數(shù).
    (1) 求的單調(diào)區(qū)間與極值;
    (2)是否存在實數(shù),使得對任意的,當時恒有成立.若存在,求的范圍,若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    已知函數(shù),其中.
    (I)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
    (II)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    ,其中
    (1)若有極值,求的取值范圍;
    (2)若當恒成立,求的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    其中,曲線在點處的切線垂直于軸.
    (Ⅰ) 求的值;
    (Ⅱ) 求函數(shù)的極值.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    (本小題滿分12分)已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
    (Ⅰ)求實數(shù)a的值組成的集合A;
    (Ⅱ)設關(guān)于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    (本題滿分12分)
    設點P在曲線上,從原點向A(2,4)移動,如果直線OP,曲線及直線x=2所圍成的面積分別記為、。

    (Ⅰ)當時,求點P的坐標;
    (Ⅱ)當有最小值時,求點P的坐標和最小值.

    查看答案和解析>>

    同步練習冊答案
    <li id="27tks"><th id="27tks"></th></li>