已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2-(
2
n
+1
)an(n∈N+).
求證:數(shù)列{
an
n
}是等比數(shù)列;
設(shè)數(shù)列{2nan}的前n項(xiàng)和為Tn,求數(shù)列{
1
Tn
}的前n項(xiàng)和為An
考點(diǎn):數(shù)列的求和,等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:首先由數(shù)列遞推式求得數(shù)列的首項(xiàng),取n=n-1后作差即可證得數(shù)列{
an
n
}是等比數(shù)列;由等比數(shù)列的通項(xiàng)公式求出數(shù)列{an}的通項(xiàng)公式,代入{2nan}后由等差數(shù)列的前n項(xiàng)和求得Tn,取倒數(shù)后由裂項(xiàng)相消法求得數(shù)列
{
1
Tn
}的前n項(xiàng)和為An
解答: 證明:由Sn=2-(
2
n
+1
)an,①
取n=1,得a1=S1=2-(2+1)a1,即a1=
1
2
;
當(dāng)n≥2時(shí),Sn-1=2-(
2
n-1
+1)an-1
,②
①-②得,an=-
n+2
n
an+
n+1
n-1
an-1
,
2n+2
n
an=
n+1
n-1
an-1
,
an
n
=
1
2
an-1
n-1
(n≥2),
∴數(shù)列{
an
n
}是以
1
2
為首項(xiàng),以
1
2
為公比的等比數(shù)列;
∵數(shù)列{
an
n
}是以
1
2
為首項(xiàng),以
1
2
為公比的等比數(shù)列,
an
n
=
1
2n
,an=
n
2n

則2nan=2n
n
2n
=n

∴Tn=1+2+3+…+n=
n(n+1)
2

1
Tn
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

An=2(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
)
=2(1-
1
n+1
)=
2n
n+1
點(diǎn)評:本題考查了等比關(guān)系的確定,考查了等差數(shù)列的前n項(xiàng)和,訓(xùn)練了裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)A滿足:①當(dāng)x∈[1,3)時(shí),f(x)=1-|x-2|;②f(3x)=3f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)-a的零點(diǎn)從小到大依次為x1,x2,…,xn,…,若a∈(1,3),則x1+x2+…+x2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),右焦點(diǎn)為F(
7
,0)
,A、B是橢圓C的左、右頂點(diǎn),D是橢圓C上異于A、B的動點(diǎn),且△ADB面積的最大值為12.
(1)求橢圓C的方程;
(2)求證:當(dāng)點(diǎn)P(x0,y0)在橢圓C上運(yùn)動時(shí),直線l:x0x+y0y=2與圓O:x2+y2=1恒有兩個(gè)交點(diǎn),并求直線l被圓O所截得的弦長L的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,P是直線2x+2y-1=0上的一點(diǎn),Q是射線OP上的一點(diǎn),滿足|OP|•|OQ|=1.
(Ⅰ)求Q點(diǎn)的軌跡;
(Ⅱ)設(shè)點(diǎn)M(x,y)是(Ⅰ)中軌跡上任意一點(diǎn),求x+7y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的外接圓是半徑為1的圓O,且∠AOB=120°,則
AC
CB
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)M與曲線Ci上任意一點(diǎn)距離的最小值為di(i=1,2),若d1<d2,則稱C1比C2更靠近點(diǎn)M,下列為假命題的是( 。
A、C1:x=0比C2:y=0更靠近M(1,-2)
B、C1:y=ex比C2:xy=1更靠近M(0,0)
C、若C1:(x-2)2+y2=1比C2:x2+(y-2)2=1更靠近點(diǎn)M(m,2m),則m>0
D、若m>1,則C1:y2=4x比C2:x-y+m=0更靠近點(diǎn)M(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一個(gè)長方形地塊ABCD,邊AB為2km,AD為4km.,地塊的一角是濕地(圖中陰影部分),其邊緣線AC是以直線AD為對稱軸,以A為頂點(diǎn)的拋物線的一部分.現(xiàn)要鋪設(shè)一條過邊緣線AC上一點(diǎn)P的直線型隔離帶EF,E,F(xiàn)分別在邊AB,BC上(隔離帶不能穿越濕地,且占地面積忽略不計(jì)).設(shè)點(diǎn)P到邊AD的距離為t(單位:km),△BEF的面積為S(單位:km2).
(1)求S關(guān)于t的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)是否存在點(diǎn)P,使隔離出的△BEF面積S超過3km2?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
4
-
y2
m2
=1的右焦點(diǎn)到其漸近線的距離等于
3
,則該雙曲線的離心率等于( 。
A、
1
2
B、
3
2
C、2
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若 a>0,b>0,且
1
a
+
1
b
=
ab
,求a3+b3的最小值.

查看答案和解析>>

同步練習(xí)冊答案