已知函數(shù):f(x)=alnx﹣ax﹣3(a∈R).
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45o,是否存在實(shí)數(shù)m使得對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[]在區(qū)間(t,3)上總不是單調(diào)函數(shù)?若存在,求m的取值范圍;否則,說明理由;
(Ⅲ)求證:(n≥2,n∈N*).
(I)解:  ,
當(dāng)a>0時(shí),f(x)的單調(diào)增區(qū)間為(0,1],減區(qū)間為[1,+∞);
當(dāng)a<0時(shí),f(x)的單調(diào)增區(qū)間為[1,+∞),減區(qū)間為(0,1];
當(dāng)a=0時(shí),f(x)不是單調(diào)函數(shù)
(II)解:f′(2)=﹣=1得a=﹣2,f(x)=﹣2lnx+2x﹣3
∴g(x)=x3+(+2)x2﹣2x,
∴g'(x)=3x2+(m+4)x﹣2
∵g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),且g′(0)=﹣2
∴g′(t)<0,g′(3)>0  
由題意知:對(duì)于任意的t∈[1,2],g′(t)<0恒成立,所以有
∴存在﹣<m<﹣9
(Ⅲ)證明:令a=﹣1此時(shí)f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,
由(I)知f(x)=﹣lnx+x﹣3在(1,+∞)上單調(diào)遞增,
∴當(dāng)x∈(1,+∞)時(shí)f(x)>f(1),即﹣lnx+x﹣1>0,
∴l(xiāng)nx<x﹣1對(duì)一切x∈(1,+∞)成立,
∵n≥2,n∈N*,則有0<lnn<n﹣1,


(n≥2,n∈N*)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的反函數(shù).定義:若對(duì)給定的實(shí)數(shù)a(a≠0),函數(shù)y=f(x+a)與y=f-1(x+a)互為反函數(shù),則稱y=f(x)滿足“a和性質(zhì)”;若函數(shù)y=f(ax)與y=f-1(ax)互為反函數(shù),則稱y=f(x)滿足“a積性質(zhì)”.
(1)判斷函數(shù)g(x)=x2+1(x>0)是否滿足“1和性質(zhì)”,并說明理由;
(2)求所有滿足“2和性質(zhì)”的一次函數(shù);
(3)設(shè)函數(shù)y=f(x)(x>0)對(duì)任何a>0,滿足“a積性質(zhì)”.求y=f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、已知函數(shù)y=f(x)和y=g(x)在[-2,2]的圖象如圖所示,則方程f[g(x)]=0有且僅有
6
個(gè)根;方程f[f(x)]=0有且僅有
5
個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)已知函數(shù)y=f(x)的圖象是折線段ABC,其中A(0,0)、B(
1
2
,5)、C(1,0),函數(shù)y=xf(x)(0≤x≤1)的圖象與x軸圍成的圖形的面積為
5
4
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),x∈R,有下列4個(gè)命題:
①若f(1+2x)=f(1-2x),則y=f(x)的圖象關(guān)于直線x=1對(duì)稱;
②y=f(x-2)與y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱;
③若y=f(x)為偶函數(shù),且y=f(2+x)=-f(x),則y=f(x)的圖象關(guān)于直線x=2對(duì)稱;
④若y=f(x)為奇函數(shù),且f(x)=f(-x-2),則y=f(x)的圖象關(guān)于直線x=1對(duì)稱.
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x3+1.設(shè)f(x)的反函數(shù)是y=g(x),則g(-28)=
-3
-3

查看答案和解析>>

同步練習(xí)冊(cè)答案