(本題滿分15分)

如圖,在三棱錐中,,D為BC的中點,PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2

(Ⅰ)證明:AP⊥BC;

(Ⅱ)在線段AP上是否存在點M,使得二面角A-MC-B為直二面角?若存在,求出AM的長;若不存在,請說明理由。

本題主要考查空是點、線、面位置關(guān)系,二面角等基礎(chǔ)知識,空間向量的應用,同時考查空間想象能力和運算求解能力。滿分15分。

方法一:

   (I)證明:如圖,以O(shè)為原點,以射線OP為z軸的正半軸,

建立空間直角坐標系O—xyz

,由此可得,所以

,即

(II)解:設(shè)

設(shè)平面BMC的法向量,

平面APC的法向量

解得,故AM=3。

綜上所述,存在點M符合題意,AM=3。

方法二:

(I)證明:由AB=AC,D是BC的中點,得

平面ABC,得

因為,所以平面PAD,

(II)解:如圖,在平面PAB內(nèi)作于M,連CM,

由(I)中知,得平面BMC,

平面APC,所以平面BMC平面APC。

,

所以

從而PM,所以AM=PA-PM=3。

綜上所述,存在點M符合題意,AM=3。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2010-2011年江蘇省如皋市五校高二下學期期中考試理科數(shù)學 題型:解答題

((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機產(chǎn)生一個                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運用所學的知識說明這樣的活動對商家是否有利。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省招生適應性考試文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分15分)設(shè)函數(shù)

(Ⅰ)若函數(shù)上單調(diào)遞增,在上單調(diào)遞減,求實數(shù)的最大值;

(Ⅱ)若對任意的,都成立,求實數(shù)的取值范圍.

注:為自然對數(shù)的底數(shù).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省溫州市十校聯(lián)合體高三上學期期初摸底文科數(shù)學 題型:解答題

(本題滿分15分)已知直線與曲線相切

1)求b的值;

2)若方程上恰有兩個不等的實數(shù)根,求

①m的取值范圍;

②比較的大小

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省溫州市十校聯(lián)合體高三上學期期中考試文科數(shù)學 題型:解答題

(本題滿分15分)已知拋物線),焦點為,直線交拋物線、兩點,是線段的中點,

  過軸的垂線交拋物線于點

  (1)若拋物線上有一點到焦點的距離為,求此時的值;

  (2)是否存在實數(shù),使是以為直角頂點的直角三角形?若存在,求出的值;若不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省六校高三第一次聯(lián)考文科數(shù)學 題型:解答題

(本題滿分15分)

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)設(shè),若上不單調(diào)且僅在處取得最大值,求的取值范圍.

 

查看答案和解析>>

同步練習冊答案