在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點;
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點;
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點;
④如果k與b都是有理數(shù),則直線y=kx+b經(jīng)過無窮多個整點;
⑤存在恰經(jīng)過一個整點的直線.
考點:進行簡單的合情推理
專題:推理和證明
分析:①舉一例子即可說明本命題是真命題;
②舉一反例即可說明本命題是假命題;
③假設直線l過兩個不同的整點,設直線l為y=kx,把兩整點的坐標代入直線l的方程,兩式相減得到兩整點的橫縱坐標之差的那個點也為整點且在直線l上,利用同樣的方法,得到直線l經(jīng)過無窮多個整點,得到本命題為真命題;
④根據(jù)③為真命題,把直線l的解析式y(tǒng)=kx上下平移即不能得到y(tǒng)=kx+b,所以本命題為假命題;
⑤舉一例子即可得到本命題為真命題.
解答: 解:①令y=x+
1
2
,既不與坐標軸平行又不經(jīng)過任何整點,所以本命題正確;
②若k=
2
,b=
2
,則直線y=
2
x+
2
經(jīng)過(-1,0),所以本命題錯誤;
設y=kx為過原點的直線,若此直線l過不同的整點(x1,y1)和(x2,y2),
把兩點代入直線l方程得:y1=kx1,y2=kx2,
兩式相減得:y1-y2=k(x1-x2),
則(x1-x2,y1-y2)也在直線y=kx上且為整點,
通過這種方法得到直線l經(jīng)過無窮多個整點,
又通過上下平移得到y(tǒng)=kx+b不一定成立.則③正確,④不正確;
⑤令直線y=
2
x恰經(jīng)過整點(0,0),所以本命題正確.
綜上,命題正確的序號有:①③⑤.
故答案為:①③⑤
點評:此題考查學生會利用舉反例的方法說明一個命題為假命題,要說明一個命題是真命題必須經(jīng)過嚴格的說理證明,以及考查學生對題中新定義的理解能力,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
1-sinxcosx
cos2x
,x∈[0,
π
4
]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanx=2,則
1
(sinx-3cosx)(cosx-sinx)
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點Q(-
6
,1),邊長為4的正方形內(nèi)接于橢圓
x2
a2
+
y2
b2
=1(a>b>0),點F1、F2分別是橢圓的左右焦點.
(1)當橢圓的右準線為x=2
6
時,求橢圓的方程;
(2)當橢圓的離心率為多大時,雙曲線
x2
a2
-
y2
16b2
=1的焦距最。坎⑶蟪龃俗钚〗咕啵

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
p
=(1+
3
cos2x,1),
q
=(-1,sin2x+n)(x∈R,n∈N*),且f(x)=
p
q

(Ⅰ)在銳角△ABC中,a,b,c分別是角A,B,C的對邊,且c=3,△ABC的面積為3
3
,當n=1時,f(A)=
3
,求a的值.
(Ⅱ)若x∈[0,
π
2
]
時,f(x)的最大值為an(an為數(shù)列{an}的通項公式),設數(shù)列{bn}滿足:b1=
1
2
,且n≥2時bn=
1
an-1an
,記數(shù)列{bn}的前n項和Tn,若對?n∈N*,Tn≤k(n+4),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC所在平面上有三點P、Q、R,滿足,
PA
+3
PB
+
PC
=3
AB
,
QA
+
QB
+3
QC
=3
BC
,3
RA
+
RB
+
RC
=3
CA
,則△PQR的面積與△ABC的面積之比為( 。
A、1:2B、12:25
C、12:13D、13:25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個三角形,采用斜二測畫法作出其直觀圖,則其直觀圖的面是原三角形面積的( 。
A、
1
2
B、2倍
C、
2
4
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+3x2+ax+a
(1)若f(x)在區(qū)間(1,2)上單調(diào),求實數(shù)a的取值范圍;
(2)求證:函數(shù)f(x)圖象的對稱中心是(-1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的最小值為-4且關于x的不等式f(x)<0的解集為{x|-1≤x≤3,x∈R},
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=
f(x)
x
-lnx的零點個數(shù).

查看答案和解析>>

同步練習冊答案