y=x2-3x+2在∈[
1
2
,3]上的最小值與最大值分別為( 。
A、
3
4
,2
B、-
1
4
,2
C、-
1
4
,
3
4
D、
3
4
,3
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:對(duì)原函數(shù)進(jìn)行配方即可得到它的最小值,最大值.
解答: 解:y=x2-3x+2=(x-
3
2
)2-
1
4

∴x=
3
2
時(shí),原函數(shù)取到最小值-
1
4
;
x=3時(shí),原函數(shù)取到最大值2.
故選B.
點(diǎn)評(píng):考查二次函數(shù)的最值,以及配方法求二次函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α+β)=
1
2
,sin(α-β)=
1
3
;
(1)求證:sinαcosβ=5cosαsinβ;
(2)求證:tanα=5tanβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=log2x,則f(2)的值是( 。
A、2B、0C、1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2cos(
1
2
x-
π
3
),x∈[-π,π].
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在空間直角坐標(biāo)系中,有棱長(zhǎng)為a的正方體ABCD-A1B1C1D1,點(diǎn)M是線段DC1上的動(dòng)點(diǎn),則點(diǎn)M到直線AD1距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,角A、B、C所對(duì)應(yīng)的邊分別為a,b,c,若
a-c
sinB-sinC
=
b
sinA+sinB

(1)求角A;
(2)若函數(shù)f(x)=cos2(x+A)-sin2(x-A)+
1
2
cosx,x∈[A,π]
,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,0)、B(-2,0),動(dòng)點(diǎn)M滿足∠MBA=2∠MAB(∠MAB≠0).
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)若直線l:y=k(x+7),且軌跡E上存在不同的兩點(diǎn)C、D關(guān)于直線l對(duì)稱,求直線l斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(x2+2x-2)ex,求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率為
1
2
,直線x=2被橢圓E截得的弦長(zhǎng)為6,設(shè)F的橢圓E的右焦點(diǎn),A為橢圓E的左頂點(diǎn).
(1)求橢圓E的方程;
(2)求過(guò)點(diǎn)A、F,并且與橢圓的E右準(zhǔn)線l相切的圓的方程;
(3)若M為橢圓E的右準(zhǔn)線l上一點(diǎn),連結(jié)AM交橢圓于點(diǎn)P,求
PM
AP
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案