已知函數(shù),函數(shù)的圖象與的圖象關(guān)于點(diǎn)中心對(duì)稱。

(1)求函數(shù)的解析式;

(2)如果,試求出使成立的取值范圍;

(3)是否存在區(qū)間,使對(duì)于區(qū)間內(nèi)的任意實(shí)數(shù),只要,且時(shí),都有恒成立?

(1) 

(2)

,


解析:

(1) ……………………………………………………(6分)

(2)由解得

解得…………………………………(12分)

,

當(dāng)時(shí),,

∴對(duì)于時(shí),,命題成立!14分)

以下用數(shù)學(xué)歸納法證明對(duì),且時(shí),都有成立

假設(shè)時(shí)命題成立,即,

那么時(shí),命題也成立。

∴存在滿足條件的區(qū)間

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
)
,其中x∈R,則下列結(jié)論中正確的是( 。
A、f(x)是最小正周期為π的偶函數(shù)
B、f(x)的一條對(duì)稱軸是x=
π
3
C、f(x)的最大值為2
D、將函數(shù)y=
3
sin2x
的圖象左移
π
6
得到函數(shù)f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=|x-1|.
(1)用分段函數(shù)的形式表示該函數(shù);
(2)在右邊所給的坐標(biāo)第中畫(huà)出該函數(shù)的圖象;
(3)寫(xiě)出該函數(shù)的定義域、值域、奇偶性、單調(diào)區(qū)間(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log
1
2
(x+1),當(dāng)點(diǎn)P(x0,y0)在y=f(x)
的圖象上移動(dòng)時(shí),點(diǎn)Q(
x0-t+1
2
y0)(t∈R)在函數(shù)y=g(x)
的圖象上移動(dòng).
(I)點(diǎn)P的坐標(biāo)為(1,-1),點(diǎn)Q也在y=f(x)的圖象上,求t的值;
(Ⅱ)求函數(shù)y=g(x)的解析式;
(Ⅲ)若方程g(
x
2
)=log
1
2
2x
x+1
的解集是∅,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2cos(ωx+θ)(x∈R,ω>0,0≤θ≤
π
2
)的圖象與y軸相交于點(diǎn)M(0,
3
),且該函數(shù)的最小正周期為π.
(1)求θ和ω的值;
(2)已知點(diǎn)A(
π
2
,0),點(diǎn)P是該函數(shù)圖象上一點(diǎn),點(diǎn)Q(x0,y0)是PA的中點(diǎn),當(dāng)y0=
3
2
,x0∈[
π
2
,π]時(shí),求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省高三第二次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù)),直線,圖象的任意兩條對(duì)稱軸,且的最小值為

(I)求的表達(dá)式;

(Ⅱ)將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若關(guān)于的方程,在區(qū)間上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案