6.已知函數(shù)f(x)=mx-1,g(x)=-1+logmx(m>0,m≠1),有如下兩個(gè)命題:
p:f(x)的定義域和g[f(x)]的值域相等.
q:g(x)的定義域和f[g(x)]的值域相等.
則( 。
A.命題p,q都正確B.命題p正確,命題q不正確
C.命題p,q都不正確D.命題q不正確,命題p正確

分析 分別求出f(x),g[f(x)],g(x),f[g(x)]的定義域和值域,進(jìn)而分別判斷兩個(gè)命題的真假,可得答案.

解答 解:函數(shù)f(x)=mx-1的定義域?yàn)镽,值域?yàn)椋?,+∞);
函數(shù)g[f(x)]=-1+logm(mx-1)=x-2的定義域?yàn)镽,值域?yàn)镽,
g(x)的定義域?yàn)椋?,+∞),值域?yàn)镽;
函數(shù)f[g(x)]=${m}^{-1+{log}_{m}x-1}$=$\frac{x}{{m}^{2}}$的定義域?yàn)椋?,+∞),值域?yàn)椋?,+∞),
故p:f(x)的定義域和g[f(x)]的值域相等,不正確;
q:g(x)的定義域和f[g(x)]的值域相等,不正確;
故選:C

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,函數(shù)的定義域和值域,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若已知f(ex+$\frac{1}{e}$)=e2x+$\frac{1}{{e}^{2x}}$,關(guān)于x的不等式f(x)+m$\sqrt{f(x)+2}$≥0恒成立,則實(shí)數(shù)m的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖(1)、(2)、(3)、(4)為四個(gè)幾何體的三視圖,根據(jù)三視圖可判斷這四個(gè)幾何體依次為( 。 
A.三棱臺(tái)、三棱柱、圓錐、圓柱B.三棱臺(tái)、三棱錐、圓錐、圓臺(tái)
C.三棱柱、四棱錐、圓錐、圓臺(tái)D.三棱柱、三棱臺(tái)、圓錐、圓臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,則( 。
A.AB+BC有最大值B.AB+BC有最小值C.AE+DC有最大值D.AE+DC有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC=$\frac{π}{3}$.
(Ⅰ) 證明:AP⊥BC;
(Ⅱ)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.定義max{{x,y}=$\left\{\begin{array}{l}x,x≥y\\ y,x<y\end{array}$,設(shè)f(x)=max{ax-a,-logax}(x∈R+,a>0,a≠1).若a=$\frac{1}{4}$,則f(2)+f(${\frac{1}{2}}$)=$\frac{3}{4}$;若a>1,則不等式f(x)≥2的解集是$\{x|0<x≤\frac{1}{a^2}$或x≥loga(a+2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知命題p:?x∈[1,2],x2-a≥0,命題q:?x0∈R,使得x02+(a-1)x0-1<0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(x-1)ex-$\frac{1}{2}$ax2(a∈R).
(Ⅰ)當(dāng)a≤1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈(0,+∞)時(shí),y=f′(x)的圖象恒在y=ax3+x-(a-1)x的圖象上方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A={a,b,c},B={a,b},則下列關(guān)系不正確的是(  )
A.A∩B=BB.AB⊆BC.A∪B⊆AD.B?A

查看答案和解析>>

同步練習(xí)冊(cè)答案