若C
 
3
n
=C
 
7
n
,(n∈N*),則C
 
2
n
=
 
考點:組合及組合數(shù)公式
專題:排列組合
分析:根據(jù)組合數(shù)的性質(zhì),先求出n,可得答案.
解答: 解:∵C
 
3
n
=C
 
7
n
,
∴3+7=n,
即n=10,
C
2
10
=45
故答案為:45
點評:本題考查組合數(shù)的性質(zhì),Cnm=Cnn-m,屬于基礎(chǔ)題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2x+sinxcosx(x∈R)
(1)求f(
8
)的值;
(2)若f(
x0
2
)=
3
4
,x0∈(
π
4
π
2
),求sinx0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空氣質(zhì)量指數(shù)(簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),其數(shù)值越大說明空氣污染越嚴重,為了及時了解空氣質(zhì)量狀況,廣東各城市都設(shè)置了AQI實時監(jiān)測站.下表是某網(wǎng)站公布的廣東省內(nèi)21個城市在2014年12月份某時刻實時監(jiān)測到的數(shù)據(jù):
城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值
廣州118東莞137中山95江門78云浮76茂名107揭陽80
深圳94珠海95湛江75潮州94河源124肇慶48清遠47
佛山160惠州113汕頭88汕尾74陽江112韶關(guān)68梅州84
(1)請根據(jù)上表中的數(shù)據(jù),完成下列表格:
空氣質(zhì)量優(yōu)質(zhì)良好輕度污染中度污染
AQI值范圍[0,50)[50,100)[100,150)[150,200)
城市個數(shù)
(2)現(xiàn)從空氣質(zhì)量“良好”和“輕度污染”的兩類城市中采用分層抽樣的方式確定6個城市,省環(huán)保部門再從中隨機選取2個城市組織專家進行調(diào)研,則選取的城市既有空氣質(zhì)量“良好”的又有“輕度污染”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:若各項為正實數(shù)的數(shù)列{an}滿足an+1=
an
(n∈N*)
,則稱數(shù)列{an}為“算術(shù)平方根遞推數(shù)列”.已知數(shù)列{xn}滿足xn>0,n∈N*,且x1=
9
2
,點(xn+1,xn)在二次函數(shù)f(x)=2x2+2x的圖象上.
(1)試判斷數(shù)列{2xn+1}(n∈N*)是否為算術(shù)平方根遞推數(shù)列?若是,請說明你的理由;
(2)記yn=lg(2xn+1)(n∈N*),求證:數(shù)列{yn}是等比數(shù)列,并求出通項公式y(tǒng)n
(3)從數(shù)列{yn}中依據(jù)某種順序自左至右取出其中的項yn1,yn2,yn3,…,把這些項重新組成一個新數(shù)列{zn}:z1=yn1,z2=yn2,z3=yn3,….
(理科)若數(shù)列{zn}是首項為z1=(
1
2
)m-1
、公比為q=
1
2k
(m,k∈N*)
的無窮等比數(shù)列,且數(shù)列{zn}各項的和為
16
63
,求正整數(shù)k、m的值.
(文科) 若數(shù)列{zn}是首項為z1=(
1
2
)m-1
,公比為q=
1
2k
(m,k∈N*)
的無窮等比數(shù)列,且數(shù)列{zn}各項的和為
1
3
,求正整數(shù)k、m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)在[0,1]上是增函數(shù),在[1,+∞)上是減函數(shù),且f(3)=0,則滿足(x-1)f(x)<0的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過D(2,0),E(1,
3
2
)兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)斜率為k且不過原點O的直線l與橢圓C交于兩點M、N,若直線OM、ON的斜率分別為k1,k2,且滿足k2=k1•k2,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法:
①函數(shù)y=|x+2|的單調(diào)增區(qū)間是[2,+∞);
②設(shè)f(x)是R上的任意函數(shù),則f(x)+f(-x)是偶函數(shù),f(x)-f(-x)是奇函數(shù);
③已知A={x|x2=1},B={x|mx-1=0},若A∩B=B,則實數(shù)m取值集合是{1,-1};
④函數(shù)f(x)=-x|x|+1對于定義域R內(nèi)任意x1,x2,當x1≠x2時,恒有
f(x1)-f(x2)
x2-x1
>0;
⑤已知f(x)=2x2+1是定義在R上的函數(shù),則存在區(qū)間I,滿足I⊆R,使得對于I上任意x1,x2,當x1≠x2時,恒有f(
x1+x2
2
)
f(x1)+f(x2)
2

其中正確的是
 
.(只填寫相應(yīng)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,且f(-x)=f(x),則( 。
A、f(x)在(0,
π
2
)單調(diào)遞增
B、f(x)在(
π
4
,
4
)單調(diào)遞減
C、f(x)在(
π
4
,
4
)單調(diào)遞增
D、f(x)在(
π
2
,π)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
x
+xlnx,則曲線y=f(x)在x=1處的切線方程為(  )
A、x-y-3=0
B、x-y+3=0
C、x+y-3=0
D、x+y+3=0

查看答案和解析>>

同步練習冊答案