如圖,四棱錐中,底面是邊長為2的正方形,,且,為中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大。
(Ⅲ)在線段上是否存在點,使得點到平
面的距離為?若存在,確定點的位置;
若不存在,請說明理由.
解法一:
(Ⅰ)證明:∵底面為正方形,
∴,又,
∴平面,
∴. 2分
同理, 4分
∴平面.
5分
(Ⅱ)解:設為中點,連結,
又為中點,
可得,從而底面.
過 作的垂線,垂足為,連結.
由三垂線定理有,
∴為二面角的平面角. 7分
在中,可求得
∴. 9分
∴ 二面角的大小為. 10分
(Ⅲ)解:由為中點可知,
要使得點到平面的距離為,
即要點到平面的距離為.
過 作的垂線,垂足為,
∵平面,
∴平面平面,
∴平面,
即為點到平面的距離.
∴,
∴. 12分
設解析試題分析:解法一:
(Ⅰ)證明:∵底面為正方形,
∴,又,
∴平面,
∴. 2分
同理, 4分
∴平面.
5分
(Ⅱ)解:設為中點,連結,
又為中點,
可得,從而底面.
過 作的垂線,垂足為,連結.
由三垂線定理有,
∴為二面角的平面角. 7分
在中,可求得
∴. 9分
∴ 二面角的大小為. 10分
(Ⅲ)解:由為中點可知,
要使得點到平面的距離為,
即要點到平面的距離為.
過 作的垂線,垂足為,
∵平面,
∴平面平面,
∴平面,
即為點到平面的距離.
∴,
∴. 12分
設
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,四面體ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.
(1)求證:AD⊥BC;
(2)求二面角B—AC—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在長方體中,,,為中點.(Ⅰ)證明:;(Ⅱ)求與平面所成角的正弦值;(Ⅲ)在棱上是否存在一點,使得∥平面?若存在,求的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,ABC=60。,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)若M為線段EF的中點,設平面MAB與平面FCB所成角為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)在三棱錐中,是邊長為4的正三角形,,,、分別是、的中點;
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com