【題目】在用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

ωx+φ

0

π

x

π

Asin(ωx+φ)

0

3

﹣3

0


(1)請(qǐng)將上表空格中處所缺的數(shù)據(jù)填寫(xiě)在答題卡的相應(yīng)位置上,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 ,再將所得圖象向左平移 個(gè)單位,得到y(tǒng)=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

【答案】
(1)解:

ωx+φ

0

π

x

π

Asin(ωx+φ)

0

3

0

﹣3

0

函數(shù)表達(dá)式為f(x)=3sin( x﹣


(2)函數(shù)y=3sin( x﹣ )的圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 (縱坐標(biāo)不變),得到3sin(2x﹣ ),

再將所得函數(shù)的圖象向左平移 個(gè)單位,得到g(x)=3sin[2(x+ )﹣ ]=3sin(2x+ ),

由2k ≤2x+ ≤2kπ ,k∈Z可解得g(x)的單調(diào)遞增區(qū)間為:[kπ ,k ],k∈Z.


【解析】(1)根據(jù)用五點(diǎn)法作函數(shù)y=Asin(ωx+φ)在一個(gè)周期上的圖象的方法,將上表數(shù)據(jù)補(bǔ)充完整,直接寫(xiě)出函數(shù)f(x)的解析式.(2)由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,以及正弦函數(shù)的圖象的性質(zhì),得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在 兩個(gè)空白框中,可以分別填入( 。

A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(Ⅰ)求a;
(Ⅱ)證明:f(x)存在唯一的極大值點(diǎn)x0 , 且e﹣2<f(x0)<2﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】棱長(zhǎng)為1的正方體中,分別是的中點(diǎn).

在直線上運(yùn)動(dòng)時(shí),三棱錐體積不變;

在直線上運(yùn)動(dòng)時(shí),始終與平面平行;

③平面平面;

④連接正方體的任意的兩個(gè)頂點(diǎn)形成一條直線,其中與棱所在直線異面的有條;

其中真命題的編號(hào)是_______________.(寫(xiě)出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R,都有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時(shí),f(x)=2x1 , 有以下結(jié)論:
①2是函數(shù)f(x)的一個(gè)周期;
②函數(shù)f(x)在(1,2)上單調(diào)遞減,在(2,3)上單調(diào)遞增;
③函數(shù)f(x)的最大值為1,最小值為0;
④當(dāng)x∈(3,4)時(shí),f(x)=23x
其中,正確結(jié)論的序號(hào)是 . (請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知2Sn=3n+1+2n﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,的中點(diǎn).

(1)求證:平面;

(2)求異面直線所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|< )的部分圖象如圖所示,下列說(shuō)法正確的是(

A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱(chēng)
C.將函數(shù)f(x)的圖象向左平移 個(gè)單位得到的函數(shù)圖象關(guān)于y軸對(duì)稱(chēng)
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ+ ,kπ+ ](K∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=﹣ ,當(dāng)1≤x≤2時(shí),f(x)=x,則f(﹣ )=

查看答案和解析>>

同步練習(xí)冊(cè)答案