對于R上可導的函數(shù),若滿足,則必有(   )
A.    
C.      D.
D
解:依題意,當x≥1時,f′(x)≥0,函數(shù)f(x)在(1,+∞)上是增函數(shù);
當x<1時,f′(x)≤0,f(x)在(-∞,1)上是減函數(shù),
故當x=1時f(x)取得最小值,即有
f(0)≥f(1),f(2)≥f(1),
∴f(0)+f(2)≥2f(1).
故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)設函數(shù)。
(1)若處取得極值,求的值;
(2)若在定義域內為增函數(shù),求的取值范圍;
(3)設,當時,
求證:① 在其定義域內恒成立;
求證:②

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù),其中
(1)當時,判斷函數(shù)在定義域上的單調性;
(2)求的極值點;
(3)證明對任意的正整數(shù),不等式都成立。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)上是增函數(shù),求正實數(shù)的取值范圍;
(Ⅱ)當時,求函數(shù)上的最大值和最小值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設a為實數(shù), 函數(shù)f(x)=x3-x2-x+a.
(1)求f(x)的極值;
(2)若曲線y=f(x)與x軸僅有一個交點, 求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)= 的單調遞減區(qū)間是            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、已知對任意實數(shù),有,且時,,則時(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是定義在上的非負的可導函數(shù),且滿足,若
,則
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調減區(qū)間是  (      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案