16.上海市松江區(qū)天馬山上的“護(hù)珠塔”因其傾斜度超過(guò)意大利的比薩斜塔而號(hào)稱“世界第一斜塔”.興趣小組同學(xué)實(shí)施如下方案來(lái)測(cè)量塔的傾斜度和塔高:如圖,記O點(diǎn)為塔基、P點(diǎn)為塔尖、點(diǎn)P在地面上的射影為點(diǎn)H.在塔身OP射影所在直線上選點(diǎn)A,使仰角k∠HAP=45°,過(guò)O點(diǎn)與OA成120°的地面上選B點(diǎn),使仰角∠HPB=45°(點(diǎn)A、B、O都在同一水平面上),此時(shí)測(cè)得∠OAB=27°,A與B之間距離為33.6米.試求:
(1)塔高(即線段PH的長(zhǎng),精確到0.1米);
(2)塔身的傾斜度(即PO與PH的夾角,精確到0.1°).

分析 (1)由題意可知:△PAH,△PBH均為等腰直角三角形,AH=BH=x,∠HAB=27°,AB=33.6,即可求得x=$\frac{\frac{AB}{2}}{cos∠HAB}$=$\frac{16.8}{cos27°}$=18.86;
(2)∠OBH=180°-120°-2×27°=6°,BH=18.86,由正弦定理可知:$\frac{OH}{sin∠OBH}$=$\frac{BH}{sin∠BOH}$,OH=$\frac{18.86×sin6°}{sin120°}$=2.28,則傾斜角∠OPH=arctan$\frac{OH}{PH}$=arctan$\frac{2.28}{18.86}$=6.89°.

解答 解:(1)設(shè)塔高PH=x,由題意知,∠HAP=45°,∠HBP=45°,
∴△PAH,△PBH均為等腰直角三角形,
∴AH=BH=x…(2分)

在△AHB中,AH=BH=x,∠HAB=27°,AB=33.6,
∴x=$\frac{\frac{AB}{2}}{cos∠HAB}$=$\frac{16.8}{cos27°}$=18.86…(6分)
(2)在△BOH中,∠BOH=120°,
∴∠OBH=180°-120°-2×27°=6°,BH=18.9,
由$\frac{OH}{sin∠OBH}$=$\frac{BH}{sin∠BOH}$,
得OH=$\frac{18.86×sin6°}{sin120°}$=2.28,…(10分)
∴∠OPH=arctan$\frac{OH}{PH}$=arctan$\frac{2.28}{18.86}$≈6.9°,…(13分)
∴塔高18.9米,塔的傾斜度為6.9°.                  …(14分)

點(diǎn)評(píng) 本題考查解三角形的綜合應(yīng)用,考查正弦定理,反三角函數(shù)的應(yīng)用,考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知x,y∈R+,且x+2y=1,則x•y的最大值為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)雙曲線C:$\frac{x^2}{2}-\frac{y^2}{3}=1$,F(xiàn)1,F(xiàn)2為其左右兩個(gè)焦點(diǎn).
(1)設(shè)O為坐標(biāo)原點(diǎn),M為雙曲線C右支上任意一點(diǎn),求$\overrightarrow{OM}•\overrightarrow{{F_1}M}$的取值范圍;
(2)若動(dòng)點(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為定值,且cos∠F1PF2的最小值為$-\frac{1}{9}$,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2-2ax(a>0).
(1)當(dāng)a=2時(shí),解關(guān)于x的不等式-3<f(x)<5;
(2)對(duì)于給定的正數(shù)a,有一個(gè)最大的正數(shù)M(a),使得在整個(gè)區(qū)間[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;
(3)函數(shù)y=f(x)在[t,t+2]的最大值為0,最小值是-4,求實(shí)數(shù)a和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)P(x,y)是曲線C:$\sqrt{\frac{{x}^{2}}{25}}$+$\sqrt{\frac{{y}^{2}}{9}}$=1上的點(diǎn),F(xiàn)1(-4,0),F(xiàn)2(4,0),則|PF1|+|PF2|的最大值=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=|x-1|+1可表示為( 。
A.$y=\left\{{\begin{array}{l}{2-x,x<1}\\{x,x>1}\end{array}}\right.$B.$y=\left\{{\begin{array}{l}{2-x,x>1}\\{x,x≤1}\end{array}}\right.$C.$y=\left\{{\begin{array}{l}{x,x<1}\\{2-x,x≥1}\end{array}}\right.$D.$y=\left\{{\begin{array}{l}{2-x,x<1}\\{x,x≥1}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知abc>0,則在下列各選項(xiàng)中,二次函數(shù)f(x)=ax2+bx+c的圖象不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在直三棱柱ABC-A1B1C1中,側(cè)棱長(zhǎng)為$2\sqrt{3}$,在底面△ABC中,∠C=60°,$AB=\sqrt{3}$,則此直三棱柱的外接球的表面積為(  )
A.$4\sqrt{3}π$B.$\frac{16π}{3}$C.16πD.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知F1,F(xiàn)2是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的兩個(gè)焦點(diǎn),P為橢圓C上一點(diǎn),且∠F1PF2=$\frac{2π}{3}$,若△PF1F2的面積為$9\sqrt{3}$,則b=( 。
A.9B.3C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案