logx[log2(lnx)]=0,則x
 
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將log2(lnx)看作一個(gè)整體,利用對(duì)數(shù)的性質(zhì)到底log2(lnx)=1,進(jìn)一步利用性質(zhì)到底lnx=2,繼續(xù)求x.
解答: 解:因?yàn)閘ogx[log2(lnx)]=0,
所以log2(lnx)=1,
所以lnx=2,
所以x=e2;
故答案為:e2
點(diǎn)評(píng):本題考查了對(duì)數(shù)值為0,1時(shí)的特殊情況時(shí)的真數(shù)以及指數(shù)式與對(duì)數(shù)式的互化,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
16
+
y2
3
=1上一點(diǎn)P到一個(gè)焦點(diǎn)的距離為5,則P到另一個(gè)焦點(diǎn)的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在區(qū)間[-1,1]上求y=f(x)的值域;
(Ⅲ)在區(qū)間[a,a+1]上求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

物體的運(yùn)動(dòng)方程是s=-
1
6
t3+3t2
-5,則物體在t=3的速度為
 
,加速度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2+2n.?dāng)?shù)列{bn}中,b1=1,bn=abn-1(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)求證:①bn+1>2bn;②
1
b1
+
1
b2
+
1
b3
+…+
1
bn
<2-
1
bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PD⊥底ABCD,且PD=CD,點(diǎn)M、N分別是被AD、PC的中點(diǎn),
(1)求證:DN∥平面PMB;
(2)求證:平面PMB⊥平面PAD;
(3)求三棱錐A-PMB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是正常數(shù),且a,b,c互不相等,x,y,z∈(0,+∞),求證:
a2
x2
+
b2
y2
+
c2
z2
(a+b+c)2
x+y+z
,并指出等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把曲線ysinx-2y+3=0先沿x軸向左平移
π
2
個(gè)單位長(zhǎng)度,再沿y軸向下平移1個(gè)單位長(zhǎng)度,得到曲線方程是( 。
A、(1-y)cosx+2y-3=0
B、(1+y)sinx-2y+1=0
C、(1+y)cosx-2y+1=0
D、-(1+y)cosx+2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2mx+6在區(qū)間(-∞,-1]上為減函數(shù),則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案