【題目】設(shè)f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1)時(shí),f(x)= (1﹣x),則函數(shù)f(x)在(1,2)上(
A.是減函數(shù),且f(x)>0
B.是增函數(shù),且f(x)>0
C.是增函數(shù),且f(x)<0
D.是減函數(shù),且f(x)<0

【答案】A
【解析】解:設(shè) x∈(﹣1,0),則﹣x∈(0,1),故 f(﹣x)= (1+x). 又f(x)是定義在R上以2為周期的偶函數(shù),故 f(x)= (1+x).
再令 1<x<2,則﹣1<x﹣2<0,∴f(x﹣2)= [1+(x﹣2)],
∴f(x)= [x﹣1],
由1<x<2 可得 0<x﹣1<1,
故函數(shù)f(x)在(1,2)上是減函數(shù),且f(x)>0,
故選A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解奇偶性與單調(diào)性的綜合(奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊半徑為2的半圓形紙片,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上,設(shè)CD=2x,梯形ABCD的周長(zhǎng)為y.
(1)求出y關(guān)于x的函數(shù)f(x)的解析式;
(2)求y的最大值,并指出相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是
A.16
B.8
C.4
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α< , (Ⅰ)求tan2α的值;
(Ⅱ)求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】使函數(shù)y=sin(2x+θ)+ cos(2x+θ)為奇函數(shù),且在[0, ]上是減函數(shù)的θ一個(gè)值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列選項(xiàng)中,說(shuō)法正確的個(gè)數(shù)是( )

①命題“”的否定為“”;

②命題“在中, ,則”的逆否命題為真命題;

③設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的充分必要條件;

④若統(tǒng)計(jì)數(shù)據(jù)的方差為,則的方差為;

⑤若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)絕對(duì)值越接近1.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將曲線上的所有點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍后,得到曲線,在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程是.

(1)寫出曲線的參數(shù)方程和直線的直角坐標(biāo)方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:
①命題“x∈R,x2+x+1=0”的否定是“x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤﹣1},則A∩(RB)=A;
③函數(shù)f(x)=sin(ωx+φ)(ω>0)是偶函數(shù)的充要條件是φ=kπ+ (k∈Z);
④若非零向量 滿足 , (λ∈R),則λ=1.
其中正確命題的序號(hào)有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:

積極參加班級(jí)工作

不積極參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計(jì)

24

26

50

(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項(xiàng)活動(dòng),問(wèn)2名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?請(qǐng)說(shuō)明理由.

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案