【題目】已知數(shù)列的前項(xiàng)積為,即.
(1)若數(shù)列為首項(xiàng)為2016,公比為的等比數(shù)列,
①求的表達(dá)式;②當(dāng)為何值時(shí), 取得最大值;
(2)當(dāng)時(shí),數(shù)列都有且成立,
求證: 為等比數(shù)列.
【答案】(1)①;②12;(2)見(jiàn)解析.
【解析】試題分析:
(1)①由題意知,則,化簡(jiǎn)可得結(jié)論;②記,,即,,作商,計(jì)算出的最大值,再由n是奇數(shù)時(shí), 負(fù)數(shù),n是偶數(shù)時(shí), 是正數(shù),即可得出結(jié)論;
(2) 當(dāng)時(shí), 易得;由得,當(dāng)時(shí), ,兩式相除,化簡(jiǎn)可得,可得,這兩式相除,則易得結(jié)論.
試題解析:
(1)①由題意知,
所以
②記,,即,,
,當(dāng)時(shí), ;當(dāng)時(shí), ,
又因?yàn)?/span>,所以,當(dāng)時(shí), ;當(dāng)時(shí), ,所以的最大值為
此時(shí),而,所以.
而,
所以,當(dāng)時(shí), 取得最大值
(2)當(dāng)時(shí), ,所以,即,
已知①
當(dāng)時(shí),
①②兩式相除得,化簡(jiǎn)得,③
又因?yàn)?/span>,④
③兩式相除得,⑤
⑤式可化為: ,
令,所以,所以,
即,都成立,
所以為等比數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A,B為曲線C:y=上兩點(diǎn),A與B的橫坐標(biāo)之和為4.
(1)求直線AB的斜率;
(2)設(shè)M為曲線C上一點(diǎn),C在M處的切線與直線AB平行,且AMBM,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,平面平面, , 為中點(diǎn),且.
(Ⅰ)求證: 平面;
(Ⅱ)求證: ;
(Ⅲ)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x﹣1)的圖象關(guān)于(1,0)對(duì)稱.若對(duì)任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,則當(dāng)x>3時(shí),x2+y2的取值范圍是( )
A.(9,25)
B.(13,49)
C.(3,7)
D.(9,49)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.
(1)求二面角的余弦值;
(2)設(shè)是棱上一點(diǎn),是的中點(diǎn),若與平面所成角的正弦值為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù)y=sin2x的圖象,只需把函數(shù)y=sin(2x﹣ )的圖象( )
A.向左平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲罐中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球;乙罐中有5個(gè)紅球,3個(gè)白球和2個(gè)黑球.先從甲罐中隨機(jī)取出一球放入乙罐,分別以A1、A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再?gòu)囊夜拗须S機(jī)取出一球,以B表示由乙罐取出的球是紅球的事件,下列的結(jié)論:
①P(B)= ;
②P(B|A1)= ;
③事件B與事件A1不相互獨(dú)立;
④A1 , A2 , A3是兩兩互斥的事件;
⑤P(B)的值不能確定,因?yàn)樗cA1 , A2 , A3中哪一個(gè)發(fā)生有關(guān),
其中正確結(jié)論的序號(hào)為 . (把正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為宣傳3月5日學(xué)雷鋒紀(jì)念日,重慶二外在高一,高二年級(jí)中舉行學(xué)雷鋒知識(shí)競(jìng)賽,每年級(jí)出3人組成甲乙兩支代表隊(duì),首輪比賽每人一道必答題,答對(duì)則為本隊(duì)得1分,答錯(cuò)不答都得0分,已知甲隊(duì)3人每人答對(duì)的概率分別為,乙隊(duì)每人答對(duì)的概率都是.設(shè)每人回答正確與否相互之間沒(méi)有影響,用表示甲隊(duì)總得分.
(1)求隨機(jī)變量的分布列及其數(shù)學(xué)期望;
(2)求甲隊(duì)和乙隊(duì)得分之和為4的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com