16.設由不等式$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}}\right.$表示的平面區(qū)域為A,若直線kx-y+1=0(k∈R)平分A的面積,則實數(shù)k的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

分析 確定三條直線的交點坐標,根據(jù)直線kx-y+1=0過(0,1),若其將三角形ABC分為面積相等的兩部分,只需將線段BC平分即可,求出BC的中點的坐標代入kx-y+1=0,即可求得k的值.

解答 解:由題意,直線l1:x-y+1=0與直線l2:x+y-1=0的交點為A(0,1)
直線l1:x-y+1=0與直線l3:2x-y-2=0的交點為B(3,4)
直線l2:x+y-1=0與直線l3:2x-y-2=0的交點為C(1,0)
直線kx-y+1=0顯然過點A(0,1),若其將三角形ABC分為面積相等的兩部分,只需將線段BC平分即可.
設BC的中點為D,可得D的坐標為(2,2).
代入kx-y+1=0可得k=$\frac{1}{2}$
故選:B.

點評 本題考查線性規(guī)劃知識,考查學生分析解決問題的能力,解題的關鍵是將三角形ABC分為面積相等的兩部分,只需將線段BC平分即可,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.設f:N*→N*,函數(shù)y=f(k)是定義在N*上的增函數(shù),且f(f(k))=3k,則f(9)=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知一個半徑為1的小球在一個內(nèi)壁棱長為5的正方體密閉容器內(nèi)可以向各個方向自由運動,則該小球永遠不可能接觸到的容器內(nèi)壁的面積是( 。
A.100B.96C.54D.92

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設集合A={x|-5≤x≤3},B={x<-2或x>4},求A∩B、(∁RA)∩B、(∁RA)∩(∁RB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)y=f(x)(x∈R)滿足f(-x)=-f(x),其導函數(shù)為y=f′(x),當x>0時,xf′(x)<f(x),若$a=2f(\frac{1}{2}),b=-\frac{1}{2}f(-2),c=-\frac{1}{ln2}f(ln\frac{1}{2})$,則a,b,c的大小關系為( 。
A.a<b<cB.b<c<aC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.給定命題p:y=tanx-1只有一個零點,q:y=lg(x2+1)的值域[0,+∞),則以下為真命題的是(  )
A.pB.¬qC.p∧qD.¬p∨q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求值:
(1)(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(2$\sqrt{3}$-π)0-(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+0.25${\;}^{-\frac{3}{2}}$;
(2)已知0<x<1,且x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知復數(shù)z1=1+i,z2=3-2i,則復數(shù)$\frac{z_2}{z_1}$=( 。
A.$-\frac{1}{2}-\frac{5}{2}i$B.$-\frac{1}{2}+\frac{5}{2}i$C.$\frac{1}{2}-\frac{5}{2}i$D.$\frac{1}{2}+\frac{5}{2}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.判斷下列命題正確的是②③④
①若$\overrightarrow a$•$\overrightarrow c$=$\overrightarrow b$•$\overrightarrow c$($\overrightarrow c$≠$\overrightarrow 0$),則$\overrightarrow a$=$\overrightarrow b$;
②已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(3,-4),則$\overrightarrow a$在$\overrightarrow b$上的投影為-$\frac{6}{5}$;
③數(shù)列{an},{bn}均為等差數(shù)列,前n項和分別為Sn,Tn.若$\frac{S_n}{T_n}$=$\frac{3n-2}{5n+1}$,則$\frac{a_5}{b_5}$=$\frac{25}{46}$;
④|$\overrightarrow{AB}$|$\overrightarrow{PC}$+|$\overrightarrow{BC}$|$\overrightarrow{PA}$+|$\overrightarrow{CA}$|$\overrightarrow{PB}$=$\overrightarrow 0$⇒P為△ABC的內(nèi)心.

查看答案和解析>>

同步練習冊答案