設(shè)a=1.70.2,b=log2.10.9,c=0.82.1,則(  )
A、a>c>bB、b>c>aC、c>b>aD、c>a>b
分析:根據(jù)指數(shù)和對數(shù)的性質(zhì)分別判斷a,b,c的范圍即可比較大。
解答:解:∵1.70.2>1,log2.10.9<0,0<0.82.1<1,
∴a>1,b<0,0<c<1,
即b<c<a,
∴a>c>b,
故選:A.
點(diǎn)評:本題主要考查函數(shù)值的大小比較,根據(jù)指數(shù)函數(shù)和對數(shù) 函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖.一個小球從M處投入,通過管道自上而下落到A或B或C.已知小球從每個叉口落入左右兩個管道的可能性是相等的.某商家按上述投球方式進(jìn)行促銷活動,若投入的小球落到A,B,C.則分別設(shè)為1,2,3等獎.
(1)求投入小球1次獲得1等獎的概率;
(2)已知獲得1,2,3等獎的折扣率分別為50%,70%,90%.記隨機(jī)變量ξ為獲得k(k=1,2,3)等獎的折扣率.求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ;
(3)若有3人次(投入1球?yàn)?人次)參加促銷活動,記隨機(jī)變量η為獲得1等獎或2等獎的人次.求P(η=2).(即求3次中有二次獲得1等獎或2等獎的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆河南鄭州市高二下學(xué)期第二次月考試題數(shù)學(xué)(理科) 題型:選擇題

設(shè)橢圓的焦點(diǎn)在y軸上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},則這樣的橢圓的個數(shù)是                                                        (    )

  (A)70                 (B)35              (C)30              (D)20

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖.一個小球從M處投入,通過管道自上而下落到A或B或C.已知小球從每個叉口落入左右兩個管道的可能性是相等的.某商家按上述投球方式進(jìn)行促銷活動,若投入的小球落到A,B,C.則分別設(shè)為1,2,3等獎.
(1)求投入小球1次獲得1等獎的概率;
(2)已知獲得1,2,3等獎的折扣率分別為50%,70%,90%.記隨機(jī)變量ξ為獲得k(k=1,2,3)等獎的折扣率.求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ;
(3)若有3人次(投入1球?yàn)?人次)參加促銷活動,記隨機(jī)變量η為獲得1等獎或2等獎的人次.求P(η=2).(即求3次中有二次獲得1等獎或2等獎的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省高考真題 題型:解答題

如圖,一個小球從M處投入,通過管道自上而下落到A或B或C。已知小球從每個叉口落入左右兩個管道的可能性是相等的.某商家按上述投球方式進(jìn)行促銷活動,若投入的小球落到A,B,C,則分別設(shè)為1,2,3等獎,
(Ⅰ)已知獲得1,2,3等獎的折扣率分別為50%,70%,90%。記隨機(jī)變量ξ為獲得k(k=1,2,3)等獎的折扣率,求隨機(jī)變量ξ的分布列及期望Eξ;
(Ⅱ)若有3人次(投入1球?yàn)?人次)參加促銷活動,記隨機(jī)變量η為獲得1等獎或2等獎的人次,求P(η=2).

查看答案和解析>>

同步練習(xí)冊答案