等差數(shù)列{an}共有2n+1項,其中奇數(shù)項之和為4,偶數(shù)項之和為3,則n的值是

A.3                B.5                C.7                D.9

 

【答案】

A

【解析】

試題分析:利用等差數(shù)列的求和公式和性質(zhì)得出,來解得。解:設(shè)數(shù)列公差為d,首項為a1,奇數(shù)項共n+1項,其和為S=(n+1)an+1=4,偶數(shù)項共n項,其和為S=nan+1=3,由,可知n的值為3,選A.

考點:等差數(shù)列的求和公式

點評:本題考查等差數(shù)列的求和公式和性質(zhì),熟練記憶并靈活運用求和公式是解題的關(guān)鍵,屬基礎(chǔ)題

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、等差數(shù)列{an}共有2m項,其中奇數(shù)項之和為90,偶數(shù)項之和為72,且a2m-a1=-33,則該數(shù)列的公差為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}共有2n+1項,其中奇數(shù)項之和為4,偶數(shù)項之和為3,則n的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an} 共有2n+1項,其中奇數(shù)項之和為319,偶數(shù)項之和為290,則中間項為
29
29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}共有2n+1項,其中a1+a3+…+a2n+1=4,a2+a4+…+a2n=3,則n的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個公差不為零的等差數(shù)列{an}共有100項,首項為5,其第1、4、16項分別為正項等比數(shù)列{bn}的第1、3、5項.記{an}各項和的值為S.
(1)求S (用數(shù)字作答);
(2)若{bn}的末項不大于
S2
,求{bn}項數(shù)的最大值N;
(3)記數(shù)列{cn},cn=anbn(n∈N*,n≤100).求數(shù)列{cn}的前n項的和Tn

查看答案和解析>>

同步練習(xí)冊答案