4.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x),且當0≤x≤2時,f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有兩個根,則m的取值范圍是(  )
A.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.[-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}$)∪($\frac{1}{3}$,2)D.[-2,-$\frac{1}{3}$]∪[$\frac{1}{3}$,2]

分析 首先由題意求出f(x),然后令g(x)=mx,轉(zhuǎn)化為圖象交點的問題解決.

解答 解:由題意得f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,0≤x≤1}\\{2-x,1<x≤2}\end{array}\right.$,
又因為f(x)是偶函數(shù)且周期是4,可得整個函數(shù)的圖象,
令g(x)=mx,本題轉(zhuǎn)化為兩個交點的問題,
,
結(jié)合圖象,-2<m<-$\frac{1}{3}$或$\frac{1}{3}$<m<2,
故選:C.

點評 本題考查的是函數(shù)的性質(zhì)的綜合應(yīng)用,利用數(shù)形結(jié)合快速得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在函數(shù) ①y=cos|2x|,②y=|cosx|,③$y=|sin(2x+\frac{π}{2})|$,④y=tan|x|中,最小正周期為π的所有偶 函數(shù)為(  )
A.①②B.①②③C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某班一個學(xué)習(xí)小組在一次數(shù)學(xué)實踐活動中,測得一組數(shù)據(jù)共5個,如表
xx1x2x3x45
y2.54.65.4n7.5
若x1+x2+x3+x4=10,計算得回歸方程為$\stackrel{∧}{y}$=2.5x-2.3,則n的值為( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知等比數(shù)列{an}的前n項和為Sn,${a_2}=-\frac{1}{2}$,且滿足Sn,Sn+2,Sn+1成等差數(shù)列,則a3等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一組數(shù)據(jù)共40個,分為6組,第1組到第4組的頻數(shù)分別為10,5,7,6,第5組的頻率為0.1,則第6組的頻數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+ϕ),x∈R,其中$(A>0,ω>0,0<ϕ<\frac{π}{2})$的周期為π,且圖象上一個最低點為$M(\frac{2π}{3},-2)$.
(1)求f(x)的解析式;
(2)當$x∈[0,\frac{π}{12}]$時,求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(x+1)lnx-a(x-1)(a∈R)
(1)當a=0時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對任意x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.變量x,y之間的一組相關(guān)數(shù)據(jù)如表所示:
x4567
y8.27.86.65.4
若x,y之間的線性回歸方程為$\stackrel{∧}{y}$=$\stackrel{∧}$x+12.28,則$\stackrel{∧}$的值為( 。
A.-0.96B.-0.94C.-0.92D.-0.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某高校調(diào)查詢問了56名男女大學(xué)生在課余時間是否參加運動,得到下表所示的數(shù)據(jù).從表中數(shù)據(jù)分析,有多大把握認為大學(xué)生的性別與參加運動之間有關(guān)系.
參加運動不參加運動合計
男大學(xué)生20828
女大學(xué)生121628
合計322456

查看答案和解析>>

同步練習(xí)冊答案