A. | {x|-2<x<2} | B. | {x|x>2,或x<-2} | C. | {x|0<x<4} | D. | {x|x>4,或x<0} |
分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系,判斷a,b的關(guān)系和符號,結(jié)合函數(shù)單調(diào)性的性質(zhì)進(jìn)行求解即可.
解答 解:f(x)=(x-2)(ax+b)=ax2+(b-2a)x-2b,
∵函數(shù)f(x)=(x-2)(ax+b)為偶函數(shù),
∴f(-x)=f(x),即ax2-(b-2a)x-2b=ax2+(b-2a)x-2b,
得-(b-2a)=(b-2a),即b-2a=0,則b=2a,
則f(x)=ax2-4a,
∵f(x)在(0,+∞)單調(diào)遞增,
∴a>0,
由f(2-x)>0得a(2-x)2-4a>0,
即(2-x)2-4>0,
得x2-4x>0,得x>4或x<0,
即不等式的解集為{x|x>4,或x<0},
故選:D
點(diǎn)評 本題主要考查不等式的求解,結(jié)合函數(shù)奇偶性和單調(diào)性的性質(zhì)求出a,b的關(guān)系和符號是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
數(shù)據(jù) | 31,12,22,15,20,45,47,32,34,23,28 |
A. | 23、32 | B. | 34、35 | C. | 28、32 | D. | 28、35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$| | B. | $\frac{1}{2}$$|\begin{array}{l}{{x}_{1}}&{{y}_{1}}&{1}\\{{x}_{2}}&{{y}_{2}}&{1}\\{{x}_{3}}&{{y}_{3}}&{1}\end{array}|$ | ||
C. | $\frac{1}{2}$|$\overrightarrow{AB}$$•\overrightarrow{AC}$| | D. | $\frac{1}{2}$(cos|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12種 | B. | 14種 | C. | 16種 | D. | 24種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 81 | B. | 243 | C. | 729 | D. | 2187 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a+b}{2}$ | B. | $\sqrt{ab}$ | C. | $\sqrt{\frac{{{a^2}+{b^2}}}{2}}$ | D. | $\frac{ab}{a+b}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com