16.一個幾何體的正視圖和俯視圖都是邊長為6cm的正方形,側(cè)視圖是等腰直角三角形(如圖所示),這個幾何體的體積是( 。
A.216cm3B.54cm3C.36cm3D.108cm3

分析 由三視圖可知:該幾何體為橫放的三棱柱,為正方體的一半.

解答 解:由三視圖可知:該幾何體為橫放的三棱柱,為正方體的一半.
其體積=$\frac{1}{2}×{6}^{3}$=108cm3
故選:D.

點評 本題考查了三視圖的有關(guān)知識、正方體的體積計算公式,考查了推理能力與計算公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)z=2+$\frac{i}{1+i}$在復(fù)平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若2<a<3,5<b<6,f(x)=logax+$\frac{3}{4}x-b$有整數(shù)零點x0,則x0=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題p:?a∈(0,1)∪(1,+∞),函數(shù)f(x)=loga(x-1)的圖象過點(2,0),命題q:?x∈N,x3<x2.則( 。
A.p假q假B.p真q假C.p假q真D.p真q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2-1+lnx,其中a為實數(shù).
(1)當(dāng)a<0時,求函數(shù)f(x)的單凋區(qū)間;
(2)當(dāng)a=-$\frac{1}{2e}$(e為自然對數(shù)的底數(shù))時,若函數(shù)g(x)=|f(x)|-$\frac{2lnx+1}{x}$-b存在零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{m}{x+1}$+nlnx(m,n為常數(shù))的圖象在x=1處的切線方程為x+y-2=0
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)已知p∈(0,1),且f(p)=2,若對任意x∈(p,1),任意t∈[$\frac{1}{2}$,2],f(x)≥t3-t2-2at+2與f(x)≤t3-t2-2at+2中恰有一個恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.一臺機(jī)器由于使用時間較長,但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)器零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少隨機(jī)器運轉(zhuǎn)的速度而變化,如表是抽樣試驗結(jié)果:
轉(zhuǎn)速x/(rad/s)1614128
每小時生產(chǎn)有缺點的零件數(shù)y/件11985
若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺點的零件數(shù)最多為10個,求機(jī)器的轉(zhuǎn)速應(yīng)該控制所在的范圍.$\left\{{\begin{array}{l}{b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}}\\{a=\overline y-b\overline x}\end{array}}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BF⊥BC,CE=2BF=2AB=4,∠ABF=DCE=120°,G是AF中點.
(1)求證:AF∥平面DCE;
(2)求證:BG⊥DF;
(3)若二面角E-DF-A的大小為150°,求線段DF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=ax-$\frac{a}{x}$-10lnx,h(x)=-x2+(m-2)x+6.
(Ⅰ)若函數(shù)f(x)在其定義域上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=4時,對于任意x1,x2∈(0,1),均有h(x1)≥f(x2)恒成立,試求參數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案