已知不等式kx2-2x+6k<0的解集為B,A=(1,2),A⊆B,求實數(shù)k的取值范圍.
分析:利用一元二次不等式的解集,利用A⊆B的關系確定k 的取值范圍.
解答:解:①若k=0,則不等式等價為-2x<0,所以x>0,即B=(0,+∞).,
因為A=(1,2),所以A⊆B成立,所以此時k=0成立.
②若k≠0,設f(x)=kx2-2x+6k,設不等式的解為x1<x<x2
則由題意可知x1≤1,x2≥2.
因為x1x2=6>0,所以對于方程的兩個根同號.
所以要使A⊆B,則0<x1≤1,
若k>0,則
f(0)>0
f(1)≤0
f(2)≤0
,解得0<k≤
2
7

若k<0,f(x)=kx2-2x+6k的對稱軸為x=-
-2
2k
=
1
k
<0
,
此時函數(shù)f(x)在x>0時單調遞減,
所以要使A⊆B,則有f(1)<0即可,即f(1)=k-2+6k=7k-2<0恒成立,
所以此時k<0.
綜上滿足條件的實數(shù)k的范圍是k
2
7
點評:本題主要考查集合關系的應用,將不等式轉化為函數(shù),利用根的分布建立不等關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知不等式kx2-2x+6k<0(k≠0),如果不等式的解集是{x|x<-3或x>-2},求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式kx2+2kx-(k+2)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知不等式kx2+2kx-(k+2)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式kx2-2x+6k<0(k≠0),

(1)如果不等式的解集是{x|x<-3或x>-2},求k的值;

(2)如果不等式的解集是R,求k的范圍.

查看答案和解析>>

同步練習冊答案