若二次函數(shù)f(x)=ax2+bx+c的對稱軸為x=1,且其圖象過點(diǎn)(2,0),則的值是( )
A.-3
B.-2
C.2
D.3
【答案】分析:先根據(jù)已知條件求出a,b,c的值或之間的關(guān)系,再代入f(x)=ax2+bx+c對其進(jìn)行整理;最后代入所求即可得到結(jié)論.
解答:解:由條件得:
所以f(x)=ax2-2ax=ax(x-2).
==-3.
故選:A
點(diǎn)評:本題主要考查二次函數(shù)的性質(zhì)以及函數(shù)的值.在解決關(guān)于二次函數(shù)的題目時(shí),要注意從題中條件中找到對應(yīng)的結(jié)論,比如本題中,由對稱軸為x=1得到b=-2a.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2-4x+c的值域?yàn)閇0,+∞),則
a
c2+4
+
c
a2+4
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(-2),且函數(shù)的f(x)的一個(gè)零點(diǎn)為1.
(Ⅰ) 求函數(shù)f(x)的解析式;
(Ⅱ)對任意的x∈[
12
,+∞)
,4m2f(x)+f(x-1)≥4-4m2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f (x)=ax2+bx+c(a≠0)的部分對應(yīng)值如下所示:
x -2 1 3
f (x) 0 -6 0
則不等式f (x)<0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)且x∈R).
(1)若函數(shù)f(x)為偶函數(shù),且滿足f(x)=2x有兩個(gè)相等實(shí)根,求a,b的值;
(2)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求函數(shù)f(x)的表達(dá)式;
(3)在(2)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若二次函數(shù)f(x)=ax2+bx的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則二次函數(shù)f(x)的頂點(diǎn)在( 。
A、第四象限B、第三象限C、第二象限D、第一象限

查看答案和解析>>

同步練習(xí)冊答案