(09年丹陽(yáng)高級(jí)中學(xué)一摸)(15分)已知數(shù)列中,且點(diǎn)在直線上。

(1)求數(shù)列的通項(xiàng)公式;

(2)若函數(shù)求函數(shù)的最小值;

(3)設(shè)表示數(shù)列的前項(xiàng)和。試問:是否存在關(guān)于的整式,使得

對(duì)于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說(shuō)明理由。

解析:(1)由點(diǎn)P在直線上,

,--------------------------------------2分

,數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列

   ,同樣滿足,所以---------------4分

  (2)

      ---------------------6分

     

     所以是單調(diào)遞增,故的最小值是------------------10分

(3),可得,-------12分

    

……

,n≥2------------------14分

故存在關(guān)于n的整式gx)=n,使得對(duì)于一切不小于2的自然數(shù)n恒成立----16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年丹陽(yáng)高級(jí)中學(xué)一摸)(16分)已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;

(2)求證:在(1)的條件下,

(3)是否存在實(shí)數(shù),使的最小值是3,如果存在,求出的值;如果不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年丹陽(yáng)高級(jí)中學(xué)一摸)(15分)已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切。

(1)求橢圓的方程;

(2)設(shè)橢圓 的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于直線,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上,且滿足,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年丹陽(yáng)高級(jí)中學(xué)一摸)(15分)某商店經(jīng)銷一種奧運(yùn)會(huì)紀(jì)念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務(wù)部門上交元(為常數(shù),2≤a≤5 )的稅收。設(shè)每件產(chǎn)品的售價(jià)為x元(35≤x≤41),根據(jù)市場(chǎng)調(diào)查,日銷售量與(e為自然對(duì)數(shù)的底數(shù))成反比例。已知每件產(chǎn)品的日售價(jià)為40元時(shí),日銷售量為10件。

(1)求該商店的日利潤(rùn)L(x)元與每件產(chǎn)品的日售價(jià)x元的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的日售價(jià)為多少元時(shí),該商品的日利潤(rùn)L(x)最大,并求出L(x)的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年丹陽(yáng)高級(jí)中學(xué)一摸)(14分)設(shè)函數(shù),其中向量

(1)求的最小正周期;

(2)在中,分別是角的對(duì)邊,的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案