4.已知集合A={x|x=2n-1,n∈N*},B={y|y=5m+1,m∈N*},則集合A∩B中最小元素為(  )
A.1B.9C.11D.13

分析 由A與B,求出兩集合的交集,確定出交集中的最小元素即可.

解答 解:∵A={x|x=2n-1,n∈N*}={1,3,5,7,9,11,…},
B={y|y=5m+1,m∈N*}={6,11,16,…},
∴A∩B中最小元素為11,
故選:C.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=ln(x+1)-$\frac{3}{x}$的一個零點(diǎn)所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=alnx-x+1在(1,f(1))處的切線方程為y=0.
(1)求a及f(x)的單調(diào)區(qū)間;
(2)k∈Z,k<$\frac{{xf(x)+{x^2}}}{x-1}$對任意x>1恒成立,求k的最大值;
(3){an}中an=1+$\frac{1}{2^n}$,求證:a1a2…an<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,四棱錐PABCD中,PD⊥平面ABCD,底面ABCD為矩形,PD=DC=4,AD=2,E為PC的中點(diǎn).
(1)求證:AD⊥PC;
(2)求三棱錐APDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一條對稱軸為y軸,且θ∈(0,π),求θ=( 。
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.正項(xiàng)等比數(shù)列{an}的公比為2,若a4a10=16,則a10的值是(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中,正確的是(  )
A.若$|{\overrightarrow a}|$=$|{\overrightarrow b}|$,則$\overrightarrow a$=$\overrightarrow b$
B.若$\overrightarrow a$=$\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$是平行向量
C.若$|{\overrightarrow a}|$>$|{\overrightarrow b}|$,則$\overrightarrow a$>$\overrightarrow b$
D.若$\overrightarrow a$與$\overrightarrow b$不相等,則向量$\overrightarrow a$與$\overrightarrow b$是不共線向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和${S_n}=-{a_n}-{(\frac{1}{2})^{n-1}}+2(n∈{N^+})$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令${c_n}=\frac{n+1}{n}{a_n},{T_n}={c_1}+{c_2}+…+{c_n}$,試比較Tn與$\frac{5n}{2n+1}$的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在單位圓O的一條直徑上隨機(jī)取一點(diǎn)Q,則過點(diǎn)Q且與該直徑垂直的弦長長度不超過1的概率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$1-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步練習(xí)冊答案