【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
【答案】(1) b=30, c=50;(2) .
【解析】
(1)根據(jù)分層抽樣方法,分別求得女生和男生的人數(shù),進而即可求解表中的數(shù)據(jù)的值;
(2)由(1)利用獨立性檢驗的公式,求得的值,比較即可作出判斷的結果;
(3)設名男生分別為,名女生分別為,由題意列舉出從人中選出人接受電視臺采訪的基本事件的總數(shù),找出其中恰為一男一女所包括基本時間的個數(shù),利用古典概型及概率的計算公式,即可求解.
(1)根據(jù)分層抽樣方法抽得女生50人,男生75人,所以b=50-20=30(人),
c=75-25=50(人)
(2)因為,所以有99%的把握認為觀看2018年足球世界杯比賽與性別有關.
(說明:數(shù)值代入公式1分,計算結果3分,判斷1分)
(3)設5名男生分別為A、B、C、D、E,2名女生分別為a、b,由題意可知從7人中選出5人接受電視臺采訪,相當于從7人中挑選2人不接受采訪,其中一男一女,所有可能的結果有{A,B}{A,C}{A,D}{A,E}{A,a}{A,b}{B,C}{B,D}{B,E}{B,a}{B,b}{C,D}{C,E}{C,a} {C,b}{D,E}{D,a}{D,b}{E,a}{E,b}{a,b},共21種,
其中恰為一男一女的包括,{A,a}{A,b}{B,a}{B,b}{C,a}{C,b}{D,a}{D,b}{E,a}{E,b},
共10種.因此所求概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點恰有兩個,且落在區(qū)間[0,1),(1,2]內(nèi)各一個,求a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx(a∈R)
(1)當a=1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當x∈[0, ]時,求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學準備在開學時舉行一次大學一年級學生座談會,擬邀請20名來自本校機械工程學院、海洋學院、醫(yī)學院、經(jīng)濟學院的學生參加,各學院邀請的學生數(shù)如下表所示:
學院 | 機械工程學院 | 海洋學院 | 醫(yī)學院 | 經(jīng)濟學院 |
人數(shù) | 4 | 6 | 4 | 6 |
(Ⅰ)從這20名學生中隨機選出3名學生發(fā)言,求這3名學生中任意兩個均不屬于同一學院的概率;
(Ⅱ)從這20名學生中隨機選出3名學生發(fā)言,設來自醫(yī)學院的學生數(shù)為ξ,求隨機變量ξ的概率分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=e|lnx|(e為自然對數(shù)的底數(shù)).若x1≠x2且f(x1)=f(x2),則下列結論一定不成立的是( )
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.
(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大;
(3)試在線段AC上一點P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解學生寒假閱讀名著的情況,一名教師對某班級的所有學生進行了調(diào)查,調(diào)查結果如下表:
本數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學生中任選4人,設選到的男學生人數(shù)為 X,求隨機變量 X的分布列和數(shù)學期望;
(III)試判斷男學生閱讀名著本數(shù)的方差 與女學生閱讀名著本數(shù)的方差 的大小(只需寫出結論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com