已知函數(shù)f(x)=lnx+(a∈R).

(Ⅰ)當a=時,如果關于x的方程:f(x)-k=0有且只有一個解,求實數(shù)k的取值范圍;

(Ⅱ)當a=2時,試比較f(x)與1的大。

(Ⅲ)求證:

答案:
解析:

  解:(1)當時,,定義域是,

  ,令,得  1分

  時,,當時,,

  函數(shù)、上單調(diào)遞增,在上單調(diào)遞減  2分

  的極大值是,極小值是

  時,;當時,,

  僅有一個零點時,的取值范圍是  4分

  (2)當時,,定義域為

  令,

  

  上是增函數(shù)  8分

 、佼時,,即;

 、诋時,,即;

 、郛時,,即  8分

  (3)(法一)根據(jù)(2)的結論,當時,,即

  令,則有,  10分

  

    12分

  (法二)當時,

  ,,即時命題成立  9分

  設當時,命題成立,即

  時,

  根據(jù)(2)的結論,當時,,即

  令,則有,

  則有,即時命題也成立  11分

  因此,由數(shù)學歸納法可知不等式成立  12分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;

(2)當a≥時,函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個公共點?若存在,求出所有a的值;否則,說明理由.

(3)當x≥0時,g(x)≥-f(x)+恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x-16,

(1)求曲線y=f(x)在點(2,-6)處的切線的方程;

(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省高二下期第一次月考理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3-3x及y=f(x)上一點P(1,-2),過點P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點的直線方程;

(2)求使直線l和y=f(x)相切且切點異于P的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學導數(shù)專項訓練(河北) 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當x=時,y=f(x)有極值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學導數(shù)專項訓練(河北) 題型:解答題

已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設曲線y=f(x)上任一點處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

同步練習冊答案