【題目】已知 .經(jīng)計(jì)算得 .
(1)由上面數(shù)據(jù),試猜想出一個(gè)一般性結(jié)論;
(2)用數(shù)學(xué)歸納法證明你的猜想.
【答案】
(1)
由題意知,
.
由此得到一般性結(jié)論:
(或者猜測(cè) 也行)
(2)
證明:①當(dāng) n=1 時(shí), ,所以結(jié)論成立
②假設(shè) 時(shí),結(jié)論成立,即
那么, n=k+1 時(shí),
所以當(dāng) n=k+1 時(shí),結(jié)論也成立.
綜上所述,上述結(jié)論對(duì)都成立,所以猜想成立.
【解析】本題主要考查了歸納推理,解決問題的關(guān)鍵是(1)由歸納推理進(jìn)行猜想;(2)利用數(shù)學(xué)歸納法的步驟進(jìn)行證明.
【考點(diǎn)精析】本題主要考查了歸納推理的相關(guān)知識(shí)點(diǎn),需要掌握根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】擬用長(zhǎng)度為l的鋼筋焊接一個(gè)如圖所示的矩形框架結(jié)構(gòu)(鋼筋體積、焊接點(diǎn)均忽略不計(jì)),其中G、H分別為框架梁MN、CD的中點(diǎn),MN∥CD,設(shè)框架總面積為S平方米,BN=2CN=2x米.
(1)若S=18平方米,且l不大于27米,試求CN長(zhǎng)度的取值范圍;
(2)若l=21米,求當(dāng)CN為多少米時(shí),才能使總面積S最大,并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i ,當(dāng)實(shí)數(shù) m 為何值時(shí),
(1)z 為實(shí)數(shù);
(2)z 為虛數(shù);
(3)z 為純虛數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|1≤x<5},B={x|2<x<8},C={x|﹣a<x≤a+3}
(1)求A∪B,(UA)∩B;
(2)若C∩A=C,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=x2-2x+1+alnx 有兩個(gè)極值點(diǎn) x1,x2 , 且x1<x2 ,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng) 時(shí),討論 f(x)的單調(diào)性;
(2)若 時(shí), ,求 a 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,函數(shù) f(x)=x2(x-a) ,若f'(1)=1 .
(1)求 a 的值并求曲線 y=f(x) 在點(diǎn)(1,f(1)) 處的切線方程y=g(x) ;
(2)設(shè)h(x)=f'(x)+g(x) ,求 h(x) 在 [0,1] 上的最大值與最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com