7.設(shè)F(x)為f(x)的原函數(shù),且當(dāng)x≥0時有:f(x)F(x)=$\frac{x{e}^{x}}{2(1+x)^{2}}$,已知F(0)=1,F(xiàn)(x)>0,試求f(x).

分析 根據(jù)題意,得出∫f(x)F(x)dx=∫F(x)dF(x)=$\frac{1}{2}$F2(x),
求出F2(x),即得F(x),從而求出f(x).

解答 解:F(x)為f(x)的原函數(shù),且當(dāng)x≥0時有:f(x)F(x)=$\frac{x{e}^{x}}{2(1+x)^{2}}$,
∴∫f(x)F(x)dx=∫$\frac{{xe}^{x}}{{2(1+x)}^{2}}$dx;
又∫F(x)dF(x)=$\frac{1}{2}$F2(x),
∴F2(x)=∫$\frac{{xe}^{x}}{{(1+x)}^{2}}$dx
=-∫xexd($\frac{1}{1+x}$)
=-$\frac{{xe}^{x}}{1+x}$+∫$\frac{1}{1+x}$(1+x)exdx
=-$\frac{{xe}^{x}}{1+x}$+ex+C
=$\frac{{e}^{x}}{1+x}$+C;
又F(0)=1,F(xiàn)(x)>0,
∴F2(x)=$\frac{{e}^{x}}{1+x}$,
∴F(x)=$\sqrt{\frac{{e}^{x}}{1+x}}$
∴f(x)=F′(x)
=$\frac{1}{2}$$\sqrt{\frac{1+x}{{e}^{x}}}$•$\frac{{e}^{x}(1+x){-e}^{x}}{{(1+x)}^{2}}$
=$\frac{1}{2}$$\sqrt{\frac{1+x}{{e}^{x}}}$•$\frac{{xe}^{x}}{{(1+x)}^{2}}$,x≥0.

點評 本題考查了導(dǎo)數(shù)的應(yīng)用問題,也考查了積分與原函數(shù)的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知U=R,集合A={x|(x-2)[x-(3a+1)<0]},集合$B=\left\{{x\left|{\frac{x-2a}{{x-({{a^2}+1})}}<0}\right.}\right\}$.
(1)當(dāng)a=2時,求A∩∁UB;
(2)當(dāng)a≠1時,若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)向量$\overrightarrow a$與$\overrightarrow b$滿足$\overrightarrow a$=(-2,1),$\overrightarrow a$+$\overrightarrow b$=(-1,-2),則|${\overrightarrow a$-$\overrightarrow b}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.不等式(x+1)(2-x)≥0的解集為(  )
A.{x|-l≤x≤2}B.{x|-1<x<2}C.{x|x≥2,或-1≤-1}D.{x|x>2,或x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\sqrt{(x-1)^{2}+1}$+$\sqrt{(x+1)^{2}+1}$,則f(x)的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=(x2+mx+m)e-x
(1)當(dāng)m=0時,求f(x)的單調(diào)區(qū)間;
(2)若m≤2,證明:當(dāng)x≥0時,f(x)≤2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知a為常數(shù),且0<a<1,函數(shù)f(x)=(1+x)a-ax,求函數(shù)f(x)在x>-1上的最大值;
(2)若a,b均為正實數(shù),求證:ab+ba>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若拋物線y2=8x上一點P到其焦點的距離為9,則點P的坐標(biāo)為( 。
A.(7,±$\sqrt{14}$)B.(14,±$\sqrt{14}$)C.(7,±2$\sqrt{14}$)D.(-7,±2$\sqrt{14}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)=$\left\{\begin{array}{l}{2•{e}^{x-1},x≤2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,則f[f(2)]=( 。
A.0B.1C.3D.2

查看答案和解析>>

同步練習(xí)冊答案