19.用秦九韶算法求多項(xiàng)式f(x)=9x6+7x5+3x4+2x2-5,當(dāng)x=4時(shí)的值時(shí),先算的是( 。
A.4×4=16B.9×4=36C.4×4×4=64D.9×4+7=43

分析 用秦九韶算法求多項(xiàng)式f(x)=9x6+7x5+3x4+2x2-5=(((((9x+7)x+3)x)x+2)x)x-5,即可得出.

解答 解:用秦九韶算法求多項(xiàng)式f(x)=9x6+7x5+3x4+2x2-5=(((((9x+7)x+3)x)x+2)x)x-5,
當(dāng)x=4時(shí)的值時(shí),先算的是9×4+7=43.
故選:D.

點(diǎn)評(píng) 本題考查了秦九韶算法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的焦點(diǎn)在y軸上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},則這樣的橢圓有(  )
A.12個(gè)B.20個(gè)C.24個(gè)D.35個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+x2-xlna-b(b∈R,a>0且a≠1),e是自然對(duì)數(shù)的底數(shù),
(1)討論函數(shù)f(x)在(0,+∞)上的單調(diào)性
(2)當(dāng)a>1時(shí),若存在x0∈[-1,1],使得f(x0)≤e-1,求實(shí)數(shù)b的取值范圍.(參考公式:(ax)'=axlna)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知條件p:a≤1,條件q:-1≤a≤1,則p是q的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{lnx}{x+a}+b-1$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x-1.
(1)求a,b
(2)試比較20162017與20172016的大小,并說明理由.
(3)當(dāng)c<1時(shí),證明:對(duì)任意的x>0,有$\frac{(x+1)lnx}{x}-x+c-1<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=ax2-lnx-a.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對(duì)任意x∈(1,+∞),都有$f(x)+\frac{e}{e^x}>\frac{1}{x}$,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=a+msin2x+ncos2x的圖象經(jīng)過點(diǎn)A(0,1),B($\frac{π}{4}$,1),且當(dāng)x∈$[{0,\frac{π}{4}}]$時(shí),f(x)取得最大值2$\sqrt{2}$-1.
(1)求f(x)的解析式;
(2)是否存在向量$\overrightarrow m$,使得將f(x)的圖象按向量$\overrightarrow m$平移后可以得到一個(gè)奇函數(shù)的圖象?若存在,求出$|{\overrightarrow m}|$最小的$\overrightarrow m$;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線2x+y=3的傾斜角是π-arctan2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)分別求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值,并歸納猜想一般性結(jié)論,并給出證明;
(2)求值:f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案