11.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1-i)=1+i,則|z|=( 。
A.0B.$\sqrt{2}$C.2D.1

分析 利用復(fù)數(shù)的模的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)z滿足z(1-i)=1+i,則|z||1-i|=|1+i|,
可得|z|$•\sqrt{2}=\sqrt{2}$,
∴|z|=1.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的模的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以等腰直角三角形ABC斜邊AB的中線CD為棱,將△ABC折疊,使平面ACD⊥平面BCD,則AC與BC的夾角為( 。
A.30°B.60°C.90°D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,已知A(3,1),B(1,0),C(2,3),
(1)判斷△ABC的形狀;
(2)設(shè)O為坐標(biāo)原點(diǎn),$\overrightarrow{OD}$=m$\overrightarrow{OC}$(m∈R),且($\overrightarrow{AB}$-m$\overrightarrow{OC}$)∥$\overrightarrow{BC}$,求|$\overrightarrow{OD}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,AC是圓O的直徑,點(diǎn) B在圓 O上,∠B AC=30°,B M⊥AC交 AC于點(diǎn) M,E A⊥平面 A BC,F(xiàn)C∥E A,AC=4,E A=3,F(xiàn)C=1.
(1)證明:E M⊥BF;  
(2)求三棱錐 E-BMF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線l1:3mx+(m+2)y+1=0,直線l2:(m-2)x+(m+2)y+2=0,且l1∥l2,則m的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.f(x)是定義在R上的竒函數(shù),且滿足f(l-x)=f(l+x),又當(dāng)x∈〔0,1)時(shí),f(x)=2x-1,則f(log${\;}_{\frac{1}{2}}$6)的值等于(  )
A.$\frac{1}{2}$B.$\frac{5}{6}$C.-$\frac{1}{2}$D.-$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sinθ-cosθ=$\frac{1}{2}$,求下列各式的值:
(1)sinθcosθ;
(2)sin3θ-cos3θ;
(3)sin4θ+cos4θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=$\frac{1}{2}$(|x-a|+|x-2a|-3a),若?x∈R,f(x-1)≤f(x),則正數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{36}$]B.(0,$\frac{1}{9}$]C.(0,$\frac{1}{6}$]D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)y=2cosx的圖象與y=3tanx的圖象交點(diǎn)為P,過點(diǎn)P做x軸的垂線PP1,垂足為P1,直線PP1與y=sinx的圖象交于點(diǎn)P2,則線段P1P2的長(zhǎng)度為(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案