【題目】如圖,在直三棱柱中, , , 分別是的中點(diǎn).

(1)求證: 平面;

(2)求平面與平面所成的銳二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:本題考查空間中線面平行的判定方法和用空間向量求二面角。(1)作輔助線,在平面內(nèi)找到一條直線使得它與平行,然后用線面平行的判定定理證明。(2)建立空間直角坐標(biāo)系,求出兩平面的法向量,根據(jù)兩向量的夾角求出二面角的余弦值。

試題解析;

(1)證明:連,

由三棱柱是直三棱柱可得,

∴ 四邊形為矩形,

由矩形性質(zhì)得過(guò)的中點(diǎn)M,

的中點(diǎn).

,

,

;

(2) 解:,

,

.

,

兩兩垂直。

建立如圖所示的空間直角坐標(biāo)系,

,,

,

設(shè)平面的法向量為,

,

,

,

又易知平面的一個(gè)法向量為

,

∴平面與平面所成的銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)x2b圖象上的點(diǎn)P(2,1)關(guān)于直線yx的對(duì)稱點(diǎn)Q在函數(shù)g(x)lnxa上.

()求函數(shù)h(x)g(x)f(x)的最大值;

()對(duì)任意x1[1,e],x2是否存在實(shí)數(shù)k,使得不等式成立若存在,請(qǐng)求出實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且3a2ab-2b2=0.

(Ⅰ)若B,求sinC的值;

(Ⅱ)若sin A+3sin C=3sin B,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD;

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點(diǎn),且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:

學(xué)生序號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差x

20

15

13

3

2

5

10

18

物理偏差y

6.5

3.5

3.5

1.5

0.5

0.5

2.5

3.5

(1)已知xy之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;

(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).

參考公式 .

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在公比為q的等比數(shù)列{an}中,已知a1=16,且a1,a2+2,a3成等差數(shù)列.

(Ⅰ)求q,an;

(Ⅱ)若q<1,求滿足a1-a2+a3-…+(-1)2n-1a2n>10的最小的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.

(Ⅰ)求圖中實(shí)數(shù)a,b的值;

(Ⅱ)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于80分的人數(shù);

(Ⅲ)若從樣本中數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類,其中A類服務(wù)員12名,B類服務(wù)員x名.

(Ⅰ)若采用分層抽樣的方法隨機(jī)抽取20名家政服務(wù)員參加技術(shù)培訓(xùn),抽取到B類服務(wù)員的人數(shù)是16, 求x的值;

(Ⅱ)某客戶來(lái)公司聘請(qǐng)2名家政服務(wù)員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類家政服務(wù)員和2名B類家政服務(wù)員可供選擇,求該客戶最終聘請(qǐng)的家政服務(wù)員中既有A類又有B類的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E是A1D1的中點(diǎn),點(diǎn)F是CE的中點(diǎn).

(Ⅰ)求證:平面ACE⊥平面BDD1B1

(Ⅱ)求證:AE∥平面BDF.

查看答案和解析>>

同步練習(xí)冊(cè)答案