如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求證:(1)PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離。
(1)先證BC⊥平面PCD (2)
解析試題分析:(1)證明:∵PD⊥平面ABCD,BC平面ABCD,∴PD⊥BC。
由∠BCD=900,得CD⊥BC。
又PDDC=D,PD、DC平面PCD,
∴BC⊥平面PCD。
∵PC平面PCD,∴PC⊥BC。
(2)分別取AB、PC的中點(diǎn)E、F,連DE、DF,則:
易證DE∥CB,DE∥平面PBC,點(diǎn)D、E到平面PBC的距離相等。
又點(diǎn)A到平面PBC的距離等于E到平面PBC的距離的2倍。
由(1)知:BC⊥平面PCD,∴平面PBC⊥平面PCD于PC。
∵PD=DC,PF=FC,∴DF⊥PC!郉F⊥平面PBC于F。
易知DF=,故點(diǎn)A到平面PBC的距離等于.
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算 空間中直線與直線之間的位置關(guān)系
點(diǎn)評:本題考查線面平行,線面垂直,線線垂直,考查點(diǎn)到面的距離,解題的關(guān)鍵是掌握線面平行,線面垂直的判定方法,利用等體積轉(zhuǎn)化求點(diǎn)面距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分別是CC1,AB的中點(diǎn).
(1)求證:CN⊥AB1;
(2)求證:CN//平面AB1M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC中,AC=BC=AB,ABED是邊長為1的正方形,EB⊥底面ABC,若G,F分別是EC,BD的中點(diǎn).
(1)求證:GF∥底面ABC;
(2)求證:AC⊥平面EBC;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理科)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點(diǎn).
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3) 若P是棱A1C1上一點(diǎn),求CP+PB1的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體中,點(diǎn)在棱上.
(1)求異面直線與所成的角;
(2)若二面角的大小為,求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,平面ABCD,底面ABCD是菱形,,.
(1)求證:平面PAC;
(2)若,求PB與AC所成角的余弦值;
(3)若PA=,求證:平面PBC⊥平面PDC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB, PC的中點(diǎn)
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若ÐPDA=45°,求EF與平面ABCD所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 點(diǎn)E、F分別是棱PB、邊CD的中點(diǎn).(1)求證:AB⊥面PAD; (2)求證:EF∥面PAD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在多面體中,平面∥平面, ⊥平面,,,∥.
且 , .
(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com