1.某城區(qū)有農(nóng)民、工人、知識分子家庭共計(jì)2 000戶,其中農(nóng)民家庭1 800戶,工人家庭100戶.現(xiàn)要從中抽取容量為40的樣本調(diào)查家庭收入情況,則在整個(gè)抽樣過程中,可以用到的抽樣方法的是.(填序號)①②③
①簡單隨機(jī)抽樣;②系統(tǒng)抽樣;③分層抽樣.

分析 根據(jù)抽樣方法,可得整個(gè)抽樣過程三種抽樣方法都要用到.

解答 解:由于各家庭有明顯差異,所以首先應(yīng)用分層抽樣的方法分別從農(nóng)民、工人、知識分子這三類家庭中抽出若干戶,即36戶、2戶、2戶.又由于農(nóng)民家庭戶數(shù)較多,那么在農(nóng)民家庭這一層宜采用系統(tǒng)抽樣;而工人、知識分子家庭戶數(shù)較少,宜采用簡單隨機(jī)抽樣法.故整個(gè)抽樣過程三種抽樣方法都要用到.
故答案為:①②③.

點(diǎn)評 本題考查的知識點(diǎn)是收集數(shù)據(jù)的方法,其中熟練掌握各種抽樣方法的適用范圍,是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)P是△ABC內(nèi)一點(diǎn),設(shè)$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m>0,n>0),則m、n還需滿足的條件是(  )
A.m+n>0B.m+n<1C.m+n=1D.m+n>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,矩形ABCD和△ABP所在的平面互相垂直,AB=2AD=2,PA=PB.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)若多面體ABCDP的體積是$\frac{2\sqrt{6}}{9}$,求直線PD與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.O為△ABC平面內(nèi)一定點(diǎn),該平面內(nèi)一動點(diǎn)P滿足M={P|$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(|$\overrightarrow{AB}$|sinB•$\overrightarrow{AB}$+|$\overrightarrow{AC}$|sinC•$\overrightarrow{AC}$),λ>0},則△ABC的( 。┮欢▽儆诩螹.
A.重心B.垂心C.外心D.內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=3x+lnx的圖象在點(diǎn)(1,f(1))處的切線與直線x+ay+1=0垂直,則a=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,離心率為$\frac{{\sqrt{3}}}{2}$,右焦點(diǎn)為F(c,0).
(1)求橢圓C的方程;
(2)直線l與直線x=2交于點(diǎn)A,與直線x=-2交于點(diǎn)B,且$\overrightarrow{FA}$•$\overrightarrow{FB}$=0,判斷并證明直線l與橢圓有多少個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y-3≤0\end{array}\right.$,則z=2x+y的最小值(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,則下列各式成立的是( 。
A.$\overrightarrow{a}$∥$\overrightarrow$B.$\overrightarrow{a}$⊥$\overrightarrow$C.$\overrightarrow{a}$=$\overrightarrow$D.|$\overrightarrow{a}$|=|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow$=(4,y),若$\overrightarrow{a}$⊥$\overrightarrow$,則點(diǎn)P(x,y)到原點(diǎn)的距離的最小值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案