為了尋找馬航殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線方向航行,而在港口北偏東角的方向上有一個(gè)給科考船補(bǔ)給物資的小島海里,且.現(xiàn)指揮部需要緊急征調(diào)位于港口正東海里的處的補(bǔ)給船,速往小島裝上補(bǔ)給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經(jīng)測(cè)算當(dāng)兩船運(yùn)行的航線與海岸線圍成的三角形的面積最小時(shí),這種補(bǔ)給方案最優(yōu).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)應(yīng)征調(diào)位于港口正東多少海里處的補(bǔ)給船只,補(bǔ)給方案最優(yōu)?
(1);(2)1400.

試題分析:(1)本題已知條件可以理解為是固定的,點(diǎn)也是不變,直線過點(diǎn),要求面積的最小值,根據(jù)已知條件,我們用解析法來解題,以為坐標(biāo)原點(diǎn),向東方向?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044721956266.png" style="vertical-align:middle;" />正半軸,向北方向?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044721987310.png" style="vertical-align:middle;" />軸正半軸,建立直角坐標(biāo)系,則可得直線的方程為,點(diǎn)坐標(biāo)為,又有點(diǎn)坐標(biāo)為,可得直線方程,它與直線的交點(diǎn)的坐標(biāo)可解得,而,這樣要求的表達(dá)式就可得;(2)在(1)基礎(chǔ)上,,其最小值求法,把分式的分子分母同時(shí)除以,得,分母是關(guān)于的二次函數(shù),最值易求.
試題解析:(1)以O(shè)點(diǎn)為原點(diǎn),正北的方向?yàn)閥軸正方向建立直角坐標(biāo)系, (1分)
則直線OZ的方程為,設(shè)點(diǎn)A(x0,y0),則,,即A(900,600),                (3分)
又B(m,0),則直線AB的方程為:,   (4分)
由此得到C點(diǎn)坐標(biāo)為:, (6分)
  (8分)

(2)由(1)知  (10分)
  (12分)
所以當(dāng),即時(shí),最小,
(或令,則
,當(dāng)且僅當(dāng)時(shí),最。
∴征調(diào)海里處的船只時(shí),補(bǔ)給方案最優(yōu).        (14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)在區(qū)間上的最小值;
(2)設(shè),其中,判斷方程在區(qū)間 上的解的個(gè)數(shù)(其中為無理數(shù),約等于且有).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點(diǎn)為圓心的兩個(gè)同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設(shè)計(jì)周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對(duì)花壇的邊緣進(jìn)行裝飾時(shí),已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,當(dāng)為何值時(shí),取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

科學(xué)研究證實(shí),二氧化碳等溫室氣體的排放(簡(jiǎn)稱碳排放)對(duì)全球氣候和生態(tài)環(huán)境產(chǎn)生了負(fù)面影響.環(huán)境部門對(duì)A市每年的碳排放總量規(guī)定不能超過550萬噸,否則將采取緊急限排措施.已知A市2013年的碳排放總量為400萬噸,通過技術(shù)改造和倡導(dǎo)低碳生活等措施,此后每年的碳排放量比上一年的碳排放總量減少10%.同時(shí),因經(jīng)濟(jì)發(fā)展和人口增加等因素,每年又新增加碳排放量m萬噸(m>0).
(1)求A市2015年的碳排放總量(用含m的式子表示);
(2)若A市永遠(yuǎn)不需要采取緊急限排措施,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)的導(dǎo)函數(shù)是(x)=-x(x+1),則函數(shù)g(x)=f(logax)(0<a<1)的單調(diào)遞減區(qū)間是(   )
A.[-1,0]B.[,+∞),(0,1]
C.[1, ]D.(-∞,) ,(,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)一列勻速行駛的火車,通過長(zhǎng)860的隧道時(shí),整個(gè)車身都在隧道里的時(shí)間是.該列車以同樣的速度穿過長(zhǎng)790的鐵橋時(shí),從車頭上橋,到車尾下橋,共用時(shí),則這列火車的長(zhǎng)度為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知集合M={﹣1,1,2,4}N={0,1,2}給出下列四個(gè)對(duì)應(yīng)法則,其中能構(gòu)成從M到N的函數(shù)是( 。
A.y=x2B.y=x+1C.y=2xD.y=log2|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為實(shí)常數(shù)).
(1)若函數(shù)在區(qū)間上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)的取值范圍;
(2)設(shè),若不等式有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),若,則的值為     

查看答案和解析>>

同步練習(xí)冊(cè)答案