【題目】已知公差不為零的等差數(shù)列{an}的前n項和為Sn,S315,a1,a4,a13成等比數(shù)列.

1)求數(shù)列{an}的通項公式;

2)求數(shù)列的前n項和Tn大于2020的最小自然數(shù)n.

【答案】1an2n+1;(210.

【解析】

1)設(shè)等差數(shù)列{an}的公差為dd0),由題設(shè)條件列出d的方程,解出d,a1,求出通項公式;

2)由(1)求得a,再使用分組求和求出Tn,研究其單調(diào)性,求出滿足Tn大于2020的最小自然數(shù)n.

1)設(shè)等差數(shù)列{an}的公差為dd0),則S33a115,

a1+d5a45+2d,a135+11d

a1,a4,a13成等比數(shù)列,

∴(5+2d2=(5d)(5+11d),解得d0(舍去)或d2,

a15d3.

所以an3+n1)×22n+1.

2)根據(jù)(1)知a22nn+12n+12n1),

Tn=(22+23++2n+1 [1+3++2n1]2n+2n24.

2nn0,

a22nn+10,

Tn單調(diào)遞增,

又∵T92020,T102020,

所以Tn大于2020的最小自然數(shù)n10.

【點晴】

本題主要考查等差數(shù)列基本量的運算,數(shù)列的分組求和,數(shù)列的單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)若,求在區(qū)間[-1,2]上的取值范圍;

(Ⅱ)若對任意, 恒成立,記,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓).下面表格所確定的點中,恰有三個點在橢圓上.

1

0

1)求橢圓的方程;

2)已知為坐標(biāo)原點,點,分別為的上下頂點,直線經(jīng)過的右頂點,且與的另一個公共點為,直線,相交于點,若軸的交點異于,證明為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公差不為0的等差數(shù)列,,數(shù)列是等比數(shù)列,且,,數(shù)列的前n項和為

1)求數(shù)列的通項公式;

2)設(shè),求的前n項和;

3)若恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,為線段上一點,且,讓繞直線翻折到且使

(Ⅰ)在線段上是否存在一點,使平面平面?請證明你的結(jié)論;

(Ⅱ)求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程:為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程;

2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,角A,BC的對邊分別為a,b,c,若a2,,則角A的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護是一項具體有效措施.某市為有效防護疫情,宣傳居民盡可能不外出,鼓勵居民的生活必需品可在網(wǎng)上下單,商品由快遞業(yè)務(wù)公司統(tǒng)一配送(配送費由政府補貼).快遞業(yè)務(wù)主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對“快遞員”的日工資方案為:甲公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;乙公司規(guī)定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成5元,假設(shè)同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司往年忙季各隨機抽取一名快遞員并調(diào)取其100天的送件數(shù),得到如下條形圖:

1)求乙公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;

2)若將頻率視為概率,回答下列問題:

①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數(shù)學(xué)期望;

②小王想到這兩家公司中的一家應(yīng)聘“快遞員”的工作,如果僅從日收入的角度考慮,請你利用所學(xué)過的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和為.?dāng)?shù)列為非負的等比數(shù)列,且滿足

(Ⅰ)求數(shù)列,的通項公式;

(Ⅱ)若數(shù)列的前n項和為,求數(shù)列的前n項和

查看答案和解析>>

同步練習(xí)冊答案