14.已知正實(shí)數(shù)a,b 滿足a+4b=8,那么ab的最大值是4.

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:∵正實(shí)數(shù)a,b 滿足a+4b=8,
∴8≥2$\sqrt{4ab}$,化為ab≤4,當(dāng)且僅當(dāng)a=4b=4時(shí)取等號(hào).
∴ab的最大值是4.
故答案為:4.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)設(shè)z=$\frac{10i}{3+i}$,則z的共軛復(fù)數(shù)為?
(2)執(zhí)行如圖所示的程序框圖,若輸入的a,b,k分別為1,2,3,
則輸出的M是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,A、B、C、D、E、F是圓O的六個(gè)等分點(diǎn),則轉(zhuǎn)盤指針不落在陰影部分的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$(a-1)x2-x+$\frac{11}{27}$.
(Ⅰ)當(dāng)a=3時(shí),求證:函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{1}{3}$,0)對(duì)稱;
(Ⅱ)當(dāng)a<0時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知AB為圓O的直徑,C,D是圓O上的兩個(gè)點(diǎn),C是劣弧$\widehat{BD}$的中點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F.
(1)求證:CF=FG
(2)求證:DG•AC=AG•CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若向面積為2的△ABC內(nèi)任取一點(diǎn)P,并連接PB,PC,則△PBC的面積小于1的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.分別在區(qū)間[1,6],[1,4]內(nèi)各任取一個(gè)實(shí)數(shù)依次為m,n,則m<n的概率是( 。
A.0.3B.0.6C.0.7D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知復(fù)數(shù)z=(m2+3m+2)+(m2-m-6)i,則當(dāng)實(shí)數(shù)m=-1時(shí),復(fù)數(shù)z是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,得分(十分制)如圖所示,假設(shè)得分的中位數(shù)為me,眾數(shù)為
mo,則( 。
A.me=moB.mo<meC.me<moD.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案