考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:當(dāng)n=4k(k∈Z)時(shí),πsin(
π)=πsin
=π;當(dāng)n=4k+1(k∈Z)時(shí),πsin(
π)=πsinπ=0;當(dāng)n=4k+2(k∈Z)時(shí),πsin(
π)=πsin
=-π;當(dāng)n=4k+3(k∈Z)時(shí),πsin(
π)=πsin2π=0,由此可得S
2014.
解答:
解:當(dāng)n=4k(k∈Z)時(shí),πsin(
π)=πsin
=π,
當(dāng)n=4k+1(k∈Z)時(shí),πsin(
π)=πsinπ=0,
當(dāng)n=4k+2(k∈Z)時(shí),πsin(
π)=πsin
=-π,
當(dāng)n=4k+3(k∈Z)時(shí),πsin(
π)=πsin2π=0,
由此可得S
2014=503×0+0-π+2014×1=2014-π.
故選:B.
點(diǎn)評(píng):本題考查數(shù)列的前2014項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)列的周期性的合理運(yùn)用.