8.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(3,x),若$\overrightarrow{a}$•$\overrightarrow$=3,則x=3.

分析 直接利用向量垂直的坐標(biāo)運算列式求解x值.

解答 解:$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(3,x),
由$\overrightarrow{a}$•$\overrightarrow$=3,得2×3-x=3,解x=3.
故答案為:3.

點評 本題考查平面向量的數(shù)量積運算,考查向量垂直的坐標(biāo)運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義域為R的奇函數(shù)f(x)滿足f(3-x)+f(x)=0,且當(dāng)$x∈({-\frac{3}{2},0})$時,f(x)=log2(2x+7),則f(2017)=( 。
A.-2B.log23C.3D.-log25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題“?m∈[0,1],x+$\frac{1}{x}$≥2”的否定形式是( 。
A.?m∈[0,1],x+$\frac{1}{x}$<2B.?m∈[0,1],x+$\frac{1}{x}$≥2
C.?m∈(-∞,0)∪(0,+∞),x+$\frac{1}{x}$≥2D.?m∈[0,1],x+$\frac{1}{x}$<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知F是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左焦點,設(shè)動點P在橢圓上,若直線FP的斜率大于$\sqrt{3}$,則直線OP(O為原點)的斜率的取值范圍是( 。
A.$({-∞,-\frac{3}{2}})$B.$({-∞,-\frac{3}{2}}]∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}}]$C.$({-∞,-\frac{3}{2}})∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}})$D.$[{-\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知F1(-1,0),F(xiàn)2(1,0),曲線C1上任意一點M滿足$|{M{F_2}}|-|{M{F_1}}|=\sqrt{2}$;曲線C2上的點N在y軸的右邊且N到F2的距離與它到y(tǒng)軸的距離的差為1.
(1)求C1,C2的方程;
(2)過F1的直線l與C1相交于點A,B,直線AF2,BF2分別與C2相交于點C,D和E,F(xiàn).求$\sqrt{|{CD}|•|{EF}|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一只口袋內(nèi)裝有大小相同的4只球,其中2只黑球,2只白球,從中一次隨機摸出2只球,有1只黑球的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)x>0,y>0,z>0,xyz=1,求證:$\frac{1}{{x}^{3}y}$+$\frac{1}{{y}^{3}z}$+$\frac{1}{{z}^{3}x}$≥$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=5,a2=11,且{an-2}是等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx.
(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求正實數(shù)a的取值范圍;
(2)當(dāng)a=1時,求f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值.
(3)求證:對于大于1的正整數(shù)n,ln$\frac{n}{n-1}$>$\frac{1}{n}$.

查看答案和解析>>

同步練習(xí)冊答案