已知cosα=
2
3
,且-
π
2
<α<0,求
tan(-α-π)sin(2π+α)
cos(-α)tan(π+α)
的值.
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:根據(jù)cosα的值及α的范圍,利用同角三角函數(shù)間的基本關系求出sinα的值,進而求出tanα的值,原式利用誘導公式化簡,約分后將tanα的值代入計算即可求出值.
解答: 解:∵cosα=
2
3
,且-
π
2
<α<0,
∴sinα=-
1-cos2α
=-
5
3
,tanα=
sinα
cosα
=-
5
2
,
則原式=
-tanαsinα
cosαtanα
=-tanα=
5
2
點評:此題考查了運用誘導公式化簡求值,熟練掌握誘導公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合M={(x,y)|x+y=3},N={(x,y)|x-y=5},那么集合M∩N為(  )
A、x=4,y=-1
B、(4,-1)
C、{4,-1}
D、{(4,-1)}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+xlnx的圖象在點x=e(e為自然對數(shù)的底數(shù))處的切線與直線x+3y-1=0垂直.
(1)求a的值;
(2)若k∈Z,且k<
f(x)
x-1
對任意x>1恒成立,求k的最大值;
(3)當n>m≥4時,證明:(mnnm>(nmmn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:cos(π-θ)+tan(π+θ)sin(
π
2
-θ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(-2x+
π
6
)+
3
2
,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間.
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,角A、B、C的對邊分別為a、b、c,且bcosC,-acosA,ccosB成等差數(shù)列.
(1)求角A的大;
(2)若a=
3
,b+c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,且4sin2
B+C
2
-cos2A=
7
2

(Ⅰ)求角A的大;
(Ⅱ)若a=
3
且a≤b,求b-
1
2
c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P且傾斜角為α的弦,
(1)當α=135°時,求|AB|;
(2)當弦AB被點P平分時,求出直線AB的方程;
(3)設過P點的弦的中點為M,求點M的坐標所滿足的關系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(1-2x)2005=a0+a1x+a2x2+…+a2005x2005(x∈R),則(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2005)=
 
(用數(shù)字作答)

查看答案和解析>>

同步練習冊答案