已知f(x)=asinx+
3x
+2,若f(ln2)=4,則f(ln
1
2
)=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的性質(zhì)和對(duì)數(shù)的性質(zhì)求解.
解答: 解:∵f(x)=asinx+
3x
+2,
∴f(ln2)=asin(ln2)+
3ln2
+2=4,
∴asin(ln2)+
3ln2
=2,
∴f(ln
1
2
)=-(asin(ln2)+
3ln2
)+2=-2+2=0.
故答案為:0.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在銳角三角形ABC中,a,b,c分別為角A,B,C的對(duì)邊,a2+b2-6abcosC=0,且sin2C=2sinAsinB.(1)求角C的值;
(2)設(shè)函數(shù)f(x)=cos(ωx-
3
)-cosωx(ω>0),且f(x)兩個(gè)相鄰最高點(diǎn)之間的距離為
π
2
,求f(A)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,P,Q,R分別是AA1,D1C1,BC的中點(diǎn),試證明過P,Q,R的截面為正六邊形,且截面與其他棱的交點(diǎn)為棱的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同一平面內(nèi),有一組平行線L1,L2,L3,…,Ln,相鄰兩直線之間的距離都等于1,A是平面內(nèi)一點(diǎn),點(diǎn)A到直線L1的距離是2,B,C是直線L1上的不同2點(diǎn),P1,P2,P3,…,Pn分別是直線L1,L2,L3,…,Ln上的點(diǎn),向量
APn
=xn
AB
+yn
AC
(n∈N+),則x1+x2+x3+…+xn+y1+y2+y3+…+yn的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|x2-2x-3<0},B={x∈R|-2<x<2},則A∩B=(  )
A、(-1,1)
B、(-1,2)
C、{-1,0}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2+x-6=0},B={x|ax+1=0},滿足A?B,則a取值的集合是( 。
A、{-
1
2
,
 
 
1
3
}
B、{-
1
2
}
C、{
1
3
}
D、{0,-
1
2
,
1
3
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集A={3,4,5},B={1,3,6},則A∩B=( 。
A、{3}
B、{4,5}
C、{1,6}
D、{2,4,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E為AD中點(diǎn),M是棱PC的中點(diǎn),PA=PD=2,BC=
1
2
AD=1,CD=
3
,求二面角E-PA-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
|cosα|
cosα
+
|tanα|
tanα
的值域?yàn)?div id="pxxnbnz" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊答案