2.某班開展一次智力競賽活動,共a,b,c三個問題,其中題a滿分是20分,題b,c滿分都是25分.每道題或者得滿分,或者得0分.活動結(jié)果顯示,全班同學(xué)每人至少答對一道題,有1名同學(xué)答對全部三道題,有15名同學(xué)答對其中兩道題.答對題a與題b的人數(shù)之和為29,答對題a與題c的人數(shù)之和為25,答對題b與題c的人數(shù)之和為20.則該班同學(xué)中只答對一道題的人數(shù)是4;該班的平均成績是42.

分析 利用方程組求出答對題a,題b,題c的人數(shù),再計算答對一題的人數(shù)和平均成績.

解答 解:設(shè)xa、xb、xc分別表示答對題a,題b,題c的人數(shù),
則有$\left\{\begin{array}{l}{{x}_{a}{+x}_=29}\\{{x}_{a}{+x}_{c}=25}\\{{x}_{+x}_{c}=20}\end{array}\right.$,
解得xa=17,xb=12,xc=8;
∴答對一題的人數(shù)為37-1×3-2×15=4,
全班人數(shù)為1+4+15=20;
平均成績?yōu)?\frac{1}{20}$×(17×20+12×25+8×25)=42.
故答案為:4,42.

點評 本題考查了求平均數(shù)與解方程組的應(yīng)用問題,是綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)非零向量$\overrightarrow a$與$\overrightarrow b$夾角是$\frac{2π}{3}$,且$|\overrightarrow a|=|\overrightarrow a+\overrightarrow b|$,則$\frac{|2\overrightarrow a+t\overrightarrow b|}{|\overrightarrow b|}$的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)$a={log_2}\frac{1}{5}$,$b={log_3}\frac{1}{5}$,c=2-0.1,則a,b,c間的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在空間直角坐標(biāo)系O-xyz中,一個四面體的四個頂點坐標(biāo)分別是(0,0,0),(0,3,1),(2,3,0),(2,0,1),則它的外接球的表面積為14π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四邊形ABCD中,AB∥CD,∠BCD=$\frac{2π}{3}$,四邊形ACFE為矩形,且CF⊥平面ABCD,AD=CD=BC=CF.
(1)求證:EF⊥平面BCF;
(2)點M在線段EF上運動,當(dāng)點M在什么位置時,平面MAB與平面FCB所成銳二面角最大,并求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α-β)的值為( 。
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+4cosθ}\\{y=-1+4sinθ}\end{array}\right.$(θ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,直線l:$ρ=\frac{2\sqrt{2}m}{sin(θ+\frac{π}{4})}$(m為常數(shù)).
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點,當(dāng)|AB|=4時,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,∠ABC=90°,BC=6,點P在BC上,則$\overrightarrow{PC}$•$\overrightarrow{PA}$的最小值是( 。
A.-36B.-9C.9D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某校開設(shè)A類選修課4門,B類選修課2門,每位同學(xué)需從兩類選修課中共選4門,若要求至少選一門B類課程,則不同的選法共有14種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案