A. | $-\frac{6}{5}$ | B. | $-\frac{7}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{7}{5}$ |
分析 由已知利用兩角和的正切函數(shù)公式,特殊角的三角函數(shù)值可求tanθ,進(jìn)而利用同角三角函數(shù)基本關(guān)系式化簡所求即可得解.
解答 解:∵$tan({θ+\frac{π}{4}})=-3$,
∴$\frac{tanθ+1}{1-tanθ}$=-3,解得:tanθ=2,
∴2sin2θ-cos2θ=$\frac{2si{n}^{2}θ-co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2ta{n}^{2}θ-1}{ta{n}^{2}θ+1}$=$\frac{7}{5}$.
故選:D.
點評 本題主要考查了兩角和的正切函數(shù)公式,特殊角的三角函數(shù)值,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | +∞ | B. | a | C. | -a | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{13}$=1 | B. | $\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{3}$-y2=1 | D. | x2-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,1),$4\sqrt{5}$ | B. | (2,1),$4\sqrt{5}$ | C. | (-3,1),$4\sqrt{3}$ | D. | (2,-1),3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 中位數(shù)為14 | B. | 眾數(shù)為13 | C. | 平均數(shù)為15 | D. | 方差為19 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com