已知H是球O的直徑AB上的一點(diǎn),AH:HB=1:2,AH⊥平面α,H為垂足,α截球O所得截面的面積為π,則球O的表面積為(  )
A、
4
B、
2
C、
8
D、
16π
3
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:設(shè)球的半徑為R,根據(jù)題意知由與球心距離為
1
3
R的平面截球所得的截面圓的面積是π,我們易求出截面圓的半徑為1,根據(jù)球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,我們易求出該球的半徑,進(jìn)而求出球的表面積.
解答: 解:設(shè)球的半徑為R,∵AH:HB=1:2,∴平面α與球心的距離為
1
3
R,
∵α截球O所得截面的面積為π,
∴d=
1
3
R時(shí),r=1,
故由R2=r2+d2得R2=12+(
1
3
R)2,∴R2=
9
8

∴球的表面積S=4πR2=
9
2
π

故選:B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是球的表面積公式,若球的截面圓半徑為r,球心距為d,球半徑為R,則球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中所有正確的說法的序號(hào)是
 

①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②把函數(shù)y=sin2x圖象上所有點(diǎn)向右平移
π
3
個(gè)單位得到y(tǒng)=sin(2x-
π
3
)的圖象;
③“4<k<6”是“方程
x2
6-k
+
y2
k-4
=1表示橢圓”的必要不充分條件;
④f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x>0時(shí)的解析式是f(x)=2x,則x<0時(shí)的解析式為f(x)=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在橫放得四棱錐E-ABCD中,底面ABCD是正方形,∠DAE=90°,且△ABE是等腰直角三角形,其中∠BAE=90°,連接AC、BD交于點(diǎn)O.
(1)求證:BD⊥平面AEC;
(2)若二面角A-BD-E的大小為60°,且直線EC與平面ABCD所成的角為θ,求sinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-y2
=1的離心率等于( 。
A、
1
2
B、
5
2
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,海上有A,B兩個(gè)小島相距10km,船O將保持觀望A島和B島所成的視角為60°,現(xiàn)從船O上派下一只小艇沿BO方向駛至C處進(jìn)行作業(yè),且OC=BO.設(shè)AC=xkm.
(1)若AO=
10
3
3
km,求出x的取值;
(2)用x分別表示OA2+OB2和OA•OB,并求出x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC各棱長(zhǎng)都相等(也稱正四面體),E、F分別是BC、AD上的點(diǎn).
(1)求證:直線AC與BD所成的角為90°;
(2)若E是BC的中點(diǎn),求直線AE與BD所成角的余弦值;
(3)若AF:FD=CE:EB=3:2,設(shè)EF與AC、BD所成的角分別為α、β,求證:α+β=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的中心為O,右焦點(diǎn)為F、右頂點(diǎn)為A,直線x=
a2
c
與x軸的交點(diǎn)為K,則
|FA|
|OK|
的最大值為( 。
A、
1
2
B、
1
3
C、
1
4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算定積分:
4
1
1
x
dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中,兩個(gè)函數(shù)相等的是( 。
A、f(x)=
(x-1)2
,g(x)=x-1
B、f(x)=
x2-1
,g(x)=
x+1
x-1
C、f(x)=(
x-1
2,g(x)=
(x-1)2
D、f(x)=
x-1,x≥0
-x-1,x<0
,g(x)=
x2
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案