13.已知拋物線y2=-6x的焦點為F,點M,N在拋物線上,且滿足$\overrightarrow{FM}=k\overrightarrow{FN}(k≠0)$,則|MN|的最小值6.

分析 由題意,MN為通徑時,|MN|取得最小值,求出通徑,即可得出結論.

解答 解:由題意,MN為通徑時,|MN|取得最小值,
由于F(-1.5,0),則x=-1.5代入y2=-6x,可得y=±3,
∴通徑=6,
∴|MN|的最小值為6.
故答案為6.

點評 本題考查拋物線的性質,考查向量知識的運用,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的一點,且BF⊥平面ACE,AC與BD交于點G.
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
(3)求三棱錐C-BFG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在直角坐標系xoy中,點P到兩點$(-2\sqrt{2},0)$、$(2\sqrt{2},0)$的距離之和等于6,設點P的軌跡為曲線C,直線x-my-1=0與曲線C交于A、B兩點.
(Ⅰ)求曲線C的方程;
(Ⅱ)若以線段AB為直徑的圓過坐標原點,求m的值;
(Ⅲ)當實數(shù)m取何值時,△AOB的面積最大,并求出面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=xex-5.
(1)試求函數(shù)f(x)的單調區(qū)間及最值
(2)設函數(shù)g(x)=|f(x-3)+5|,若方程[g(x)]2+tg(x)+1=0(t∈R)有四個實數(shù)根,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\sqrt{10}cosα\\ y=\sqrt{10}sinα\end{array}\right.$(α為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為$ρcos({θ-\frac{π}{4}})=2\sqrt{2}$
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)設點P是曲線C上的一個動點,求它到直線l的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.“k=1”是“直線y=x+k與圓x2+y2=1相交”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知三棱錐A-BCD,E、F、G、H分別是AB、BC、CD、DA的中點,若AC=BD,則四邊形EFGH為( 。
A.梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{{\sqrt{6}}}{3}$,點(1,0)與橢圓短軸的兩個端點的連線互相垂直.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設橢圓C與直線y=kx+m相交于不同的兩點M,N,點D(0,-1),當|DM|=|DN|時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知正四棱柱ABCD-A1B1C1D1的底面邊長是2,側棱長是16,M,N分別是棱BB1、B1C1的中點.
(1)求異面直線MN與A1C1所成角的大小(結果用反三角表示)
(2)求直線MN與平面ACC1A1所成的角(結果用反三角函數(shù)表示)].

查看答案和解析>>

同步練習冊答案