如圖所示,平面⊥平面,,,四邊形是直角梯形,, 分別為的中點.

(Ⅰ) 用幾何法證明:平面;
(Ⅱ)用幾何法證明:平面

(1)利用三角形的中位線的性質,先證明四邊形ODBF是平行四邊形,從而可得OD∥FB,利用線面平行的判定,可以證明OD∥平面ABC;(2)利用平面ABDE⊥平面ABC,證明BD⊥平面ABC,進而可證平面ABDE;

解析試題分析:(Ⅰ)證明:取中點,連結. ∵的中點,的中點,
, 又,

∴四邊形是平行四邊形.
                    4分
又∵平面,平面
平面.             6分
(Ⅱ)證明:,中點,∴, 8分
又∵面⊥面,面,
.       12分
考點:線面平行,線面垂直
點評:本題考查線面平行,考查線面垂直,考查線面角,解題的關鍵是正確運用線面平行與垂直的判定與性質,正確運用向量法求線面角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.

(I)求二面角B-AF-D的大;
(II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐ABCD-PGFE中,底面ABCD是直角梯形,側棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD與BC所成角的大;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角梯形ABCD中,AD//BC,,,如圖(1).把沿翻折,使得平面,如圖(2).

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在線段上是否存在點N,使得?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在五棱錐P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.

(Ⅰ)求證:平面PCD⊥平面PAC;
(Ⅱ)求四棱錐P—ACDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直三棱柱的三視圖如圖所示,的中點.

(Ⅰ)求證:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點,使 角?若存在,確定點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,面為正方形,面為等腰梯形,,,,.

(1)求證:;
(2)求三棱錐的體積;
(3)線段上是否存在點,使//平面?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,的中點.

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

同步練習冊答案