設(shè)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x(x∈R).
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論g(x)在[0,1]上的單調(diào)性并用定義證明;
(Ⅲ)若方程g(x)-b=0在[-2,2]上有兩個不同的解,求實(shí)數(shù)b的取值范圍.
分析:(Ⅰ)利用f(x)=3x,且f(a+2)=18求出a,再代入g(x)即可.
(Ⅱ)用證明一個函數(shù)在某個區(qū)間上的單調(diào)性的常用基本步驟:取點(diǎn),作差或作商,變形,判斷即可.
(Ⅲ)令t=2x 轉(zhuǎn)化為t-t2-b=0在[-
1
4
,4]
有兩個不同的解,利用數(shù)形結(jié)合來解題.
解答:精英家教網(wǎng)解:(1)∵f(x)=3x,且f(a+2)=18,
∴3a+2=18?3a=2(2分)
∵g(x)=3ax-4x=(3ax-4x
∴g(x)=2x-4x(2分)
(2)g(x)在[0,1]上單調(diào)遞減.證明如下
設(shè)0≤x1<x2≤1
g(x2)-g(x1)=2x2-4x2-2x1+4x1
=(2x2-2x1)(1-2x1-2x2)(2分)
∵0≤x1<x2≤1,
2x22x1,1≤2x1<2,1<2x2≤2
2≤2x1+2x2<4
-3<1-2x1-2x2<-1,
(2x2-2x1)(1-2x1-2x2)<0
∴g(x2)<g(x1
∴g(x)在[0,1]上單調(diào)遞減(2分)
(3)方程為2x -4x -b=0,
t=2x x∈[-2,2],則
1
4
≤t≤4
(2分)
轉(zhuǎn)化為方程為t-t2-b=0在[
1
4
,4]
有兩個不同的解.
∴b=t-t2b=-(t-
1
2
)2+
1
4

當(dāng)t=
1
2
時b取最大值
1
4

當(dāng)t=
1
4
時,b=
3
16
,當(dāng)t=4時,b=-12
可得,當(dāng)
3
16
≤b<
1
4
時,方程有兩不同解.(4分)
點(diǎn)評:本題是在考查指數(shù)函數(shù)的基礎(chǔ)上,對函數(shù)的單調(diào)性,數(shù)形結(jié)合思想等的一個綜合考查.在用定義證明或判斷一個函數(shù)在某個區(qū)間上的單調(diào)性時,基本步驟是取點(diǎn),作差或作商,變形,判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x(x∈R).
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論g(x)在[0,1]上的單調(diào)性并用定義證明;
(Ⅲ)若方程g(x)-b=0在[-2,2]上有兩個不同的解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x(x∈R).
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論g(x)在[0,1]上的單調(diào)性并用定義證明;
(Ⅲ)若方程g(x)-b=0在[-2,2]上有兩個不同的解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江二中高一(下)統(tǒng)測數(shù)學(xué)試卷(一)(解析版) 題型:解答題

設(shè)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x(x∈R).
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論g(x)在[0,1]上的單調(diào)性并用定義證明;
(Ⅲ)若方程g(x)-b=0在[-2,2]上有兩個不同的解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市梁山二中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x(x∈R).
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論g(x)在[0,1]上的單調(diào)性并用定義證明;
(Ⅲ)若方程g(x)-b=0在[-2,2]上有兩個不同的解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案