分析 (1)由曲線C1在參數(shù)方程消去參數(shù)即可得到普通方程;曲線C2在極坐標(biāo)方程ρ=2sinθ兩邊同乘以ρ,由極坐標(biāo)與直角坐標(biāo)的互化公式轉(zhuǎn)化即可;
(2)圓心O(0,1)到直線C1的距離為d減去半徑,即可求得|MN|最小值.
解答 解:(1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-3t+2}\\{y=4t+1}\end{array}\right.$(t為參數(shù)),消去參數(shù),可得C1的普通方程為4x+3y-11=0;
曲線C2:ρ=2sinθ,直角坐標(biāo)方程為x2+(y-1)2=1.
(2)如圖,圓心O(0,1)到直線C1的距離為d=$\frac{|3-11|}{5}$=$\frac{8}{5}$,
∴|MN|最小值=d-r=$\frac{3}{5}$.
點評 本題考查三種方程的轉(zhuǎn)化,考查點到直線距離公式的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{13}+4\sqrt{5}$ | B. | $2+4\sqrt{5}$ | C. | $4+4\sqrt{5}$ | D. | $6\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com